Project description:In the two F8 advanced crosses of broiler by Leghorn and broiler by Fayoumi, birds at day 1 were challenged with Salmonella enteritidis (SE). Spleen were collected at day 7 and 8. SE bacterial load in spleen were measured. Based on the bacterial load, birds were divided into high and low SE load groups. Keywords: Salmonella enteritidis challenge
Project description:In the two F8 advanced crosses of broiler by Leghorn and broiler by Fayoumi, birds at day 1 were challenged with Salmonella enteritidis (SE). Spleen were collected at day 7 and 8. SE bacterial load in spleen were measured. Based on the bacterial load, birds were divided into high and low SE load groups. At each line cross and each day time point, three pair comparisons among high SE load, low SE load, and non-SE were used for the loop design, and two biological replicates were used.
Project description:3 genetic chicken lines (Leghorn G-B1, Fayoumi, broiler) were used. chicken were challenged with SE at day 1, spleen and cecum tissues were collected at 2 hours and 16 hours after post challenge Keywords: time-course
Project description:3 genetic chicken lines (Leghorn G-B1, Fayoumi, broiler) were used. chicken were challenged with SE at day 1, spleen and cecum tissues were collected at 2 hours and 16 hours after post challenge
Project description:Chromosomal structural variation can cause alterations in gene dosage and gene regulation between genomes. Structural variants producing a change in the number of copies of a genomic region are termed copy number variants (CNVs). CNVs have been demonstrated to have causative effects on both Mendelian and complex traits, including susceptibility to infectious diseases. We are interested in mapping CNVs to domesticated chicken breeds to help determine structural variation between genomes that influences economically important traits. For this study, Fayoumi, Leghorn, Line A broiler and Line B broiler chicken were chosen. Fayoumi and Leghorn chickens were selected as these two breeds harbor different responses certain pathogens like Avian Influenza Virus and coccidiosis; Broiler Line A and Line B indivduals were chosen as they harbor different intestinal colonization loads to the bacterium Campylobacter jejuni. Campylobacter genetic Line A and genetic Line B are from a commercial producer have been previously described as either resistant (Line A) or susceptible (Line B). Highly inbred chicken lines Fayoumi M15.2 (n=6) and Leghorn GHs6 (n=6) and broilers from Line A (n=24 individuals in pools of 4) and Line B (n=24 individuals in pools of 4)were subjected to array Comparative Genomic Hybridization (aCGH). Each sample was normalized to a Red Jungle Fowl reference. CNVs for each individual and between lines were determined. The major goal of this study was to discover and characterize CNVs in chickens to further narrow in on Quantitative Trait Loci (QTLs) affecting disease response.
Project description:Chromosomal structural variation can cause alterations in gene dosage and gene regulation between genomes. Structural variants producing a change in the number of copies of a genomic region are termed copy number variants (CNVs). CNVs have been demonstrated to have causative effects on both Mendelian and complex traits, including susceptibility to infectious diseases. We are interested in mapping CNVs to domesticated chicken breeds to help determine structural variation between genomes that influences economically important traits. For this study, Fayoumi, Leghorn, Line A broiler and Line B broiler chicken were chosen. Fayoumi and Leghorn chickens were selected as these two breeds harbor different responses certain pathogens like Avian Influenza Virus and coccidiosis; Broiler Line A and Line B indivduals were chosen as they harbor different intestinal colonization loads to the bacterium Campylobacter jejuni. Campylobacter genetic Line A and genetic Line B are from a commercial producer have been previously described as either resistant (Line A) or susceptible (Line B). Highly inbred chicken lines Fayoumi M15.2 (n=6) and Leghorn GHs6 (n=6) and broilers from Line A (n=24 individuals in pools of 4) and Line B (n=24 individuals in pools of 4)were subjected to array Comparative Genomic Hybridization (aCGH). Each sample was normalized to a Red Jungle Fowl reference. CNVs for each individual and between lines were determined. The major goal of this study was to discover and characterize CNVs in chickens to further narrow in on Quantitative Trait Loci (QTLs) affecting disease response. For the test DNA in Fayoumi and Leghorn, samples from 6 inbred Fayoumi and 6 inbred Leghorn individuals were used; For the test DNA in the Campylobacter genetic lines, samples from 24 individual broilers of Line A (in pools of 4) and 24 individual broilers of Line B (in pools of 4) were used. For the reference DNA, Red Jungle Fowl line UCD001 was used from a self-self hybridization.
Project description:244K array Comparative Genomic Hybridization for the characterization of CNVs among inbred Fayoumi, inbred Leghorn, Line A broiler, and Line B broiler chicken
Project description:In order to have a better understanding about gene expression response to NDV in chicken spleen, and also to unravel genetic regulation related to resistance to NDV, gene expression in spleen of two chicken lines [Fayoumi (resistant line) and Leghorn (susceptible line)] with different resistance to infectious diseases were investigated. Each line was divided into two groups (3-4 chickens/group) that are respectively treated by NDV(200 ul of 107 EID50%) and Phosphate-buffered saline (PBS) through nasal and ocular inoculation routes at 21 days post hatch. Gene expression in spleen was then detected by RNA-seq at 2 and 6 day post inoculation (dpi).
Project description:Domestic chicken has been intensively studied because of its role as an efficient source of lean meat. However, commercial broilers resulting from genetic selection for rapid growth demonstrate detrimental traits, such as excess deposition of abdominal adipose tissue, metabolic disorders, and reduced reproduction. Therefore fast-growing broilers represent “obese” chickens compared to slow-growing egg layers (e.g, Leghorn) or wild strain of meat-type chickens (e.g., Fayoumi). Fayoumi chickens, originating from Egypt, represent a harder stain of chickens, which are more resistant to diseases. Leghorn chickens are the original breed of commercial U.S layers. Both lines were maintained highly inbred by Iowa State University poultry geneticists with an inbreeding coefficient higher than 0.95. Both Fayoumi and Leghorn demonstrated lean phenotype compared to broilers, and these three lines of chickens are genetically distant from each other.
Project description:Avian influenza caused significant damages to the poultry industry, efforts have been made to reveal the disease mechanisms as well as mechanisms of disease resistance. Here, by investigating two chicken breeds with distinct responses to avian influenza virus (AIV), Leghorn GB2 and Fayoumi M43, we compared their differences in genome, methylation and transcriptome. Except for MX1 involved direct acting antiviral mechanism, we found that in both methylation and transcriptome levels the more AIV resistant breed Fayoumi showed less variations compared to White Leghorn after AIV challenging. Fayoumi also showed better consistency between the changes in methylation and changes in transcriptome level. Our results suggested a homeostasis hypothesis of avian influenza resistance, with Fayoumi better maintaining homeostasis both in epigenetic and gene expression levels.