Project description:Few studies have assessed the patterns of parasite populations of rodents over a longitudinal gradient in Chile. In this work, the gastrointestinal helminthic fauna of invasive rodents in Chile was examined to assess the association between their presence/absence and abundance with latitude, host sex, and host body condition, and to assess the coexistence and correlation of the abundance between parasite species. Rodents were obtained from 20 localities between 33 and 43°S. Helminths were extracted from the gastrointestinal tract and identified morphologically. Overall, 13 helminth taxa were obtained. The most frequently identified parasite species was Heterakis spumosa, and the most abundant was Syphacia muris, while Physaloptera sp. was the most widely distributed. No locality presented with a coexistence that was different from that expected by chance, while the abundance of five helminthic species correlated with the abundance of another in at least one locality, most likely due to co-infection rather than interaction. Host sex was associated with parasite presence or abundance, and female sex-biased parasitism was notably observed in all cases. Body condition and latitude presented either a positive or negative association with the presence or abundance of parasites depending on the species. It is notable that the likely native Physaloptera sp. is widely distributed among invasive rodents. Further, gravid females were found, suggesting spillback of this species to the native fauna. The low frequency and abundance of highly zoonotic hymenolepid species suggest that rodents are of low concern regarding gastrointestinal zoonotic helminths.
Project description:While resistance to anticoagulant rodenticides is known to occur in many European populations of Norway rat and house mouse, to-date no data is available on the occurrence in Ireland of such resistance. No genetic evidence for the occurrence of resistance was found in 65 Norway rat samples analysed, indicative of an absence, or low prevalence, of resistance in rats in at least the Eastern region of the island of Ireland. The presence of two of the most commonly found amino acid substitutions Leu128Ser and Tyr139Cys associated with house mouse resistance to anticoagulant rodenticides was confirmed. The occurrence of two such mutations is indicative of the occurrence of resistance to anticoagulant rodenticides in house mice in the Eastern region of the island of Ireland.
Project description:BackgroundDeer mice (Peromyscus maniculatus) and congeneric species are the most common North American mammals. They represent an emerging system for the genetic analyses of the physiological and behavioral bases of habitat adaptation. Phylogenetic evidence suggests a much more ancient divergence of Peromyscus from laboratory mice (Mus) and rats (Rattus) than that separating latter two. Nevertheless, early karyotypic analyses of the three groups suggest Peromyscus to be exhibit greater similarities with Rattus than with Mus.ResultsComparative linkage mapping of an estimated 35% of the deer mouse genome was done with respect to the Rattus and Mus genomes. We particularly focused on regions that span synteny breakpoint regions between the rat and mouse genomes. The linkage analysis revealed the Peromyscus genome to have a higher degree of synteny and gene order conservation with the Rattus genome.ConclusionThese data suggest that: 1. the Rattus and Peromyscus genomes more closely represent ancestral Muroid and rodent genomes than that of Mus. 2. the high level of genome rearrangement observed in Muroid rodents is especially pronounced in Mus. 3. evolution of genome organization can operate independently of more commonly assayed measures of genetic change (e.g. SNP frequency).
Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)