Project description:Systematics and biogeography of Dorymyrmex (Hymenoptera: Formicidae)
| PRJNA759281 | ENA
Project description:Mitogenome architecture supports the non-monophyly of the cosmopolitan parasitoid wasp subfamily Doryctinae (Hymenoptera: Braconidae) recovered by nuclear and mitochondrial phylogenomics
| PRJNA1025353 | ENA
Project description:Phylogenomic inference of the higher classification of velvet ants (Hymenoptera: Mutillidae)
| PRJNA912170 | ENA
Project description:Phylogenomics and biogeography of seven cacti genera
| PRJNA934337 | ENA
Project description:Phylogenomics, biogeography, and adaptive radiation of grapes
Project description:We have previously described the reindeer antler velvet as a highly unique mammalian model of adult skin regeneration as wounds on backskin form a raised, contractile scar devoid of appendages or pigment, whereas identical wounds in antler velvet exhibit scar-less regeneration. To ask whether regenerative capacity is inherent to cells within the velvet (and not due to factors derived from the antler environment), we transplanted full thickness velvet skin grafts onto dorsal backskin. This scRNA-Seq sample profiles cells within the ectopic velvet graft to assess their molecular resemblance to regenerative velvet or non-regenerative dorsal backskin.
Project description:In adult mammals, skin wound healing has evolved to favor rapid repair through the formation of fibrotic scar. These dermal scars are dysfunctional and may lead to chronic disfigurement and disability, yet the biologic mechanisms that drive fibrosis and prevent tissue regeneration remain unknown. Here, we report that reindeer (Rangifer tarandus) antler velvet exhibits regenerative wound healing, whereas identical full-thickness injury in dorsal back skin of the same animal forms fibrotic scar. This regenerative capacity is retained even following ectopic transplantation of velvet to a scar-forming site, demonstrating that this latent regenerative capacity is innate to velvet cells and independent of local factors derived from the growing antler. Single cell RNA-sequencing of uninjured skin revealed a marked divergence in resting fibroblast transcriptional states and immunomodulatory function. Uninjured velvet fibroblast shared a striking resemblance with human fetal fibroblasts whereas uninjured back skin fibroblasts exhibited an overrepresentation of pro-inflammatory genes resembling adult human fibroblasts. Identical skin injury resulted in site-specific fibroblast polarization; back fibroblasts exacerbated the inflammatory response, whereas velvet fibroblasts adopted an immunosuppressive state and reverted back to a regeneration-competent ground state. Consequently, velvet wounds exhibited an accelerated adoption of anti-inflammatory immune states and an expedited resolution of immune response. This study demonstrates reindeer as a novel comparative mammalian model to study both adult skin regeneration (velvet) and scar formation (back skin) within the same animal. Our study underscores the importance of fibroblast heterogeneity in shaping local immune cell functions that ultimately polarize wound healing outcomes. Purposeful, acute modulation of fibroblast-mediated immune signaling represents an important therapeutic avenue to mitigate scar and improve wound healing.
Project description:UCE phylogenomics of New World Ponera Latreille (Hymenoptera: Formicidae) illuminates the origin and phylogeographic history of the endemic exotic ant P. exotica