Project description:Expression of the extensive arsenal of virulence factors by Streptococcus pyogenes are controlled by many regulators, of which covR/S is one of the best characterized and can influence ~15% of the genome. Animal models have established that mutants of CovR/S arise spontaneously in vivo resulting in highly invasive organisms. We analyzed a pharyngeal and a blood isolate of S. pyogenes recovered from the same individual 13 days apart. The two isolates varied in many phenotypic properties including speB production, which were reflected in transcriptome analyses. Pulsed field gel electrophoresis, multilocus sequence typing, and partial sequencing of some key genes failed to show any differences except for an 11-base insert in the covS gene in the blood isolate. These results showing that pharyngeal and blood isolates from a single individual which differ by a simple insertion, provide evidence for the model that regulatory gene mutations allow S. pyogenes to invade different niches in the body. A chip study using total RNA recovered from two separate wild-type cultures of group A Streptococcus, Streptococcus pyogenes UH322 and UH328. Each chip measures the expression level of 1865 genes replicated twice from 7 fully sequenced strains of Streptococcus pyogenes (M1_GAS NC_002737; MGAS10394 NC_006086; MGAS315 NC_004070; MGAS5005 NC_007297; MGAS6180 NC_007296; MGAS8232 NC_003485; SSI-1 NC_004606 with fourteen 24-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:Proteomics characterisation of membrane vesicles (MV) and corresponding membranes derived from Streptococcus pyogenes M1 (clinical isolate ISS3348) grown to late-logarithmic phase in THB media.
Project description:Expression of the extensive arsenal of virulence factors by Streptococcus pyogenes are controlled by many regulators, of which covR/S is one of the best characterized and can influence ~15% of the genome. Animal models have established that mutants of CovR/S arise spontaneously in vivo resulting in highly invasive organisms. We analyzed a pharyngeal and a blood isolate of S. pyogenes recovered from the same individual 13 days apart. The two isolates varied in many phenotypic properties including speB production, which were reflected in transcriptome analyses. Pulsed field gel electrophoresis, multilocus sequence typing, and partial sequencing of some key genes failed to show any differences except for an 11-base insert in the covS gene in the blood isolate. These results showing that pharyngeal and blood isolates from a single individual which differ by a simple insertion, provide evidence for the model that regulatory gene mutations allow S. pyogenes to invade different niches in the body.
Project description:Streptococcus pyogenes is an obligate human pathobiont associated with many disease states. Here, we present a novel model of S. pyogenes infection using intact murine epithelium. From this model, we were able to perform RNA sequencing to evaluate the genetic changes undertaken by both the bacterium and host at 5 and 24 hours post infection. Analysis of these genomic data demonstrate that S. pyogenes undergoes significant genetic adaptation to successfully infect the murine epithelium, including changes to metabolism and activation of the Rgg2/Rgg3 quorum sensing (QS) system. Subsequent experiments demonstrate that an intact Rgg2/Rgg3 QS cascade is necessary to establish a stable superficial skin infection. Furthermore, activation of this pathway results in increased murine morbidity and increased bacterial burden on the skin. This phenotype is associated with gross changes to the murine skin, as well as histopathological evidence of inflammation. Taken together, these experiments offer a novel method to investigate S. pyogenes-epithelial interactions and demonstrate that a well-studied QS pathway is critical to a persistent infection.
Project description:In Streptococcus pyogenes, mutation of GidA results in avirulence despite the same growth rate as the wild type. To understand the basis of this effect, global transcription profiling was conducted. Keywords: Wild type vs. GidA mutant Streptococcus pyogenes
Project description:Whole genone expression profile comparing wild-type NZ131 to serR deletion mutant, grown in C-medium Mutants and interpretation are described further in the manuscript to be submitted: LaSarre and Federle, 2010. Title: Regulation and Consequence of Serine Catabolism in Streptococcus pyogenes. A two chip study using total RNA recovered from three separate wild-type cultures of Streptococcus pyogenes NZ131 and three separate mutant cultures of Streptococcus pyogenes NZ131 seR-, pooled following RNA extraction
Project description:Streptococcus pyogenes (Group A Streptococcus: GAS) is a major human pathogen that causes streptococcal pharyngitis, skin and soft-tissue infections, and life-threatening conditions such as streptococcal toxic shock syndrome (STSS). A large number of virulence-related genes are encoded on GAS genomes, which are involved in host-pathogen interaction, colonization, immune invasion, and long-term survival within hosts, causing the diverse symptoms. Here, we investigated the interaction between GAS-derived extracellular vesicles and host cells in order to reveal pathogenicity mechanisms induced by GAS infection.