Project description:A collection of 237,000 expressed sequence tags generated by the Sugarcane EST sequencing project (SUCEST) was analyzed in search of signal transduction components. The SUCAST (Sugarcane Signal Transduction) Catalogue contains over 3500 components, with around 2900 involved in several aspects of cell signaling and transcription. Sequence comparisons and conserved protein domain analysis revealed 477 receptors, 510 protein kinases, 107 protein phosphatases, a large number of small GTPases, G-proteins, members of the calcium and inositol metabolism, and other signal transduction-related proteins. Over 600 transcription factors were also indexed. Moreover, 437 genes with no matches in the public databases and 111 genes of unknown function were catalogued. Several of the SUCEST cDNA libraries were derived from plants submitted to abiotic stresses or infected with endophytic nitrogen fixing bacteria and stress and pathogen response-related genes were also annotated. The abundance of transcripts among six different sugarcane tissues (flowers, roots, leaves, lateral buds, 1st and 4th internodes) was evaluated using microarrays and expression profile clustering. We identified 216 genes that are significantly more abundant in one of the tissues analyzed. A subset of the data was validated by real-time PCR. Additionally, genes with similar expression levels among different tissues were identified. The characterization of these elements and their promoters can aid in the development of tools for the genetic manipulation of this plant species and other economically important grasses. Keywords: other
Project description:Sugarcane plantlets from a variety with high inputs of N obtained from BNF (genotype SP70-1143, CTC, Brazil) free of microorganisms were obtained by sterile meristem culture and micropropagation according to the method of Hendre et al. (1983). In vitro-grown SP70-1143 rooted sugarcane plantlets were inoculated as described by James et al. (1994) with 0.1 ml of 106–107 bacterial suspension. Controls were inoculated with medium only. Endophytic diazotrophic bacteria used were Gluconacetobacter diazotrophicus (PAL5 strain) or a mixture of Herbaspirillum seropedicae (HRC54 strain) and H. rubrisubalbicans (HCC103 strain). All plants were maintained at 30°C with an irradiance of 60 µmol photons m–2 s–1 for 12 h d–1. One day after the inoculation, plant tissues were examined for bacterial colonization by the Most Probable Number (MPN) estimation, according to the methods of Reis et al. (1994) and plantlets were collected and immediately frozen in liquid nitrogen. Five plantlets were polled for each treatment. Extraction of total RNA was performed separately on each sample pool. Keywords: comparison of associations with different endophytic bacterias
Project description:Alnus glutinosa belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in A. glutinosa. Symbiosis between A. glutinosa and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.
Project description:Casuarina glauca belongs to a family of angiosperms called actinorhizal plants because they can develop nitrogen-fixing nodules in association with the soil bacteria Frankia. The aim of this transcriptomic study was to get a global view of the plant symbiotic genetic program and to identify new key plant genes that control nodulation during symbiosis in C. glauca. Symbiosis between C. glauca and Frankia was obtained after inoculation of young plant with a concentrated culture of the bacteria. Inoculation was performed in a medium depleted in nitrogen which favors the induction of nitrogen fixing symbiosis. For this study we considered two stages of symbiosis: - an early stage where inoculated roots were harvested 7 days after inoculation with the bacteria and compared to two controls (non-inoculated roots grown with or without nitrogen and harvested at the same time) - a late stage where nodules (nitrogen-fixing specific organs) were harvested 21 days after inoculation and compared to non-inoculated roots harvested on the day of inoculation (which is our reference time 0d). Three biological replicates were used for each condition.
Project description:Biological nitrogen fixation (BNF) is an essential source of new nitrogen for terrestrial ecosystems. The abiotic factors regulating BNF have been extensively studied in various ecosystems and laboratory settings. Despite this, our understanding of the impact of neighbouring bacteria on N2 fixer activity remains limited. Here, we explored this question using a coculture of the free-living diazotroph Azotobacter vinelandii and the non-fixing plant growth-promoting rhizobacteria Bacillus subtilis. We assessed the interaction between the two bacteria under low N availability.
2024-10-15 | PXD056293 | Pride
Project description:Bacteria in sugarcane endophytic bacteria
Project description:Drought is one of the major environmental factors limiting biomass and seed yield production in agriculture. In this research we focused on plants from Fabaceae family, which have a unique ability for establishment of symbiosis with nitrogen-fixing bacteria, and are relatively susceptible to water limitation. We present the changes in nitrogenase activity and global gene expression occurring in Medicago truncatula and Lotus japonicus root nodules during water deficit. Our results prove a decrease in the efficiency of nitrogen fixation as well as extensive changes in plant and bacterial transcriptomes shortly after watering cessation. We show for the first time that not only symbiotic plant component, but also Sinorhizobium meliloti and Mesorhizobium loti bacteria residing in the root nodules of M. truncatula and L. japonicus, respectively, adjust their gene expression in response to water shortage. Although our results demonstrate that both M. truncatula and L. japonicus root nodules are susceptible to water deprivation, they indicate significant differences in plant and bacterial response to drought between tested species, which may be related to various type of root nodules formed by these species.
Project description:The diazotrophic CBAmC strain of Nitrospirillum amazonense has been reported to promote growth of sugarcane variety RB867515 when inoculated under field conditions in a consortium with four other nitrogen-fixing bacteria. The present work had the objective of accessing the influence of the sugarcane apoplast fluid from variety RB867515 on the global transcriptomic and proteomic profiles of CBAmC strain cultured in vitro. The comparative analysis between the transcriptome and proteome profiles showed strong consistency between the results of the two approaches. Data analysis revealed that expression levels of transcripts and proteins related to cell motility and signal transduction, among other functions, were strongly downregulated in the presence of the apoplast fluid. In contrast, transcripts and proteins were upregulated for functional categories including chaperones, iron homeostasis and multidrug efflux transporters. In conclusion, the results showed that the metabolic state of N. amazonense during cultivation in the presence of the apoplast fluid is directed to functions capable of supporting adaptation to the complex environment of the sugarcane apoplast.