ABSTRACT: Deep mutational scanning of Saccharomyces cerevisiae Hrd1 ubiquitin ligase determining residues required for endoplasmic reticulum associated degradation function
Project description:The mamallian SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) complex is essential for retrotranslocation and degradatin of misfolded proteins in the ER. HRD1 is an E3-ligase with multiple transmembrane domains that consititute the retrotranslocation channel, while its cofactor SEL1L is responsible for the stability of the complex and for substrate recruitment. This study aims to identify transcriptionally-regulated genes responding to SEL1L-HRD1 ERAD deficiency in two different mammalian cell types.
Project description:Endoplasmic reticulum (ER)-associated degradation (ERAD) mediates the degradation of misfolded and unoligomerized proteins in the early secretory pathway. ERAD substrates are detected and delivered to membrane-embedded dislocation complexes. Following transfer into the cytosol, substrates are rapidly ubiquitinated and targeted to the 26S proteasome for degradation. Hrd1 is a highly conserved, ER-resident E3 ubiquitin-protein ligase that functions in ERAD. In this study, we employed stable isotope labeling with amino acids in cell culture (SILAC) to quantitatively assess the impact of altered lipid homeostasis on the composition of S-tagged Hrd1 complexes affinity purified from HEK293 cells. Although lipid disequilibrium impaired ERAD substrate delivery to Hrd1, the overall composition of the Hrd1 complex was unaffected.
Project description:Sel1L is an adaptor protein for the E3 ligase Hrd1 involved in endoplasmic reticulum-associated degradation (ERAD). Its physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we provide the first in vivo evidence that Sel1L is indispensable for Hrd1 stability, ER homeostasis and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 weeks with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation and promotes cell death. Serendipitously, using biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of mammalian ERAD and ER homeostasis, which is essential for protein translation, pancreatic function, cellular and organismal survival. Pancreas tissue of wild type and inducible Sel1L knockout mice were subjected to gene expression analysis.
Project description:Endoplasmic reticulum-associated degradation (ERAD) represents a principle quality control (QC) mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unknown. Here we discover that IRE1alpha, the sensor of unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. Mechanistically, ERAD-mediated IRE1alpha degradation occurs in a Bip-dependent manner under basal conditions and is attenuated in response to ER stress. Both intramembrane hydrophilic residues of IRE1alpha and lectin protein OS9 are required for IRE1alpha degradation. ERAD deficiency causes IRE1alpha protein stabilization, accumulation and mild activation both in vitro and in vivo, leading to cellular hypersensitivity to ER stress and inflammation. Furthermore, though enterocyte-specific Sel1L-knockout mice (Sel1LÎ?IEC) are viable and appear normal, they are more susceptible to experimental colitis in an IRE1alpha-dependent but CHOP-independent manner. Collectively, these results demonstrate that Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1alpha signaling in vivo by managing its protein turnover. Colon epithelium of wild type and enterocyte-specific Sel1L knockout mice were subjected to gene expression analysis.
Project description:More than half of disease-causing missense variants are thought to lead to protein degradation, but the molecular mechanism of how these variants are recognized by the cell remains enigmatic. To approach this issue we have applied deep mutational scanning experiments to test the degradation of thousands of missense protein variants in large multiplexed experiments in cultured human cells. As a model protein we selected the ubiquitin-protein ligase Parkin, where known missense variants result in an autosomal recessive early onset Parkinsonism. The resulting mutational map comprises 9219 out of the 9300 (>99%) possible single-amino-acid substitution and nonsense Parkin variants. With a few notable exceptions, the majority of the destabilizing mutations are located within the structured domains of the protein, while the flexible linker regions are more tolerant to mutations. The cellular abundance data correlate with Parkin structural stability, evolutionary conservation, and separates known disease-linked variants from benign variants. Systematic mapping of degradation signals (degrons) shows that inherent primary degrons in Parkin largely overlap with regions that are highly sensitive to mutations. We identify a degron region proximal to the ACT element, which is enhanced by substitutions to hydrophobic residues. The vast majority of unstable Parkin variants are degraded through the ubiquitin-proteasome system and are stabilized at lowered temperatures. In conclusion, in addition to providing a diagnostic tool for rare genetic disorders, deep mutational scanning technologies have the potential to reveal both protein specific and general information on the specificity of the protein quality control network and the ubiquitin-proteasome system.
Project description:Sel1L is an adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum-associated degradation (ERAD), but its physiological role in a cell-type-specific manner remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Mechanistically, our data demonstrate a critical requirement of Sel1L for the secretion of lipoprotein lipase (LPL), independently of its role in Hrd1-mediated ERAD and ER homeostasis. Further biochemical analyses revealed that Sel1L physically interacts and stabilizes the LPL maturation complex consisted of LPL and lipase-maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and prone to the formation of protein aggregates, which are degraded by autophagy-mediated degradation. The Sel1L-mediated control of LPL secretion is seen in other LPL-expressing cell types as well such as cardiac muscle and macrophages. Thus, our study reports a novel role of Sel1L in LPL secretion and systemic lipid metabolism. Sel1Lflox/flox mice were crossed with adiponectin promoter driven Cre mice to create adipose tissue-specific Sel1L-/- mice. Male wildtype C57Bl/6 mice and adipose tissue-specific Sel1l-/- mice were fed a high fat diet (Research Diets D12492) for 5 weeks. Adipose tissue was excised and used for microarray analysis.
Project description:Sel1L is an adaptor protein for the E3 ligase Hrd1 involved in endoplasmic reticulum-associated degradation (ERAD). Its physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we provide the first in vivo evidence that Sel1L is indispensable for Hrd1 stability, ER homeostasis and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 weeks with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation and promotes cell death. Serendipitously, using biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of mammalian ERAD and ER homeostasis, which is essential for protein translation, pancreatic function, cellular and organismal survival.
Project description:Sel1L is an adaptor protein for the E3 ligase Hrd1 in the endoplasmic reticulum-associated degradation (ERAD), but its physiological role in a cell-type-specific manner remains unclear. Here we show that mice with adipocyte-specific Sel1L deficiency are resistant to diet-induced obesity and exhibit postprandial hypertriglyceridemia. Mechanistically, our data demonstrate a critical requirement of Sel1L for the secretion of lipoprotein lipase (LPL), independently of its role in Hrd1-mediated ERAD and ER homeostasis. Further biochemical analyses revealed that Sel1L physically interacts and stabilizes the LPL maturation complex consisted of LPL and lipase-maturation factor 1 (LMF1). In the absence of Sel1L, LPL is retained in the ER and prone to the formation of protein aggregates, which are degraded by autophagy-mediated degradation. The Sel1L-mediated control of LPL secretion is seen in other LPL-expressing cell types as well such as cardiac muscle and macrophages. Thus, our study reports a novel role of Sel1L in LPL secretion and systemic lipid metabolism.
Project description:Endoplasmic reticulum-associated degradation (ERAD) represents a principle quality control (QC) mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unknown. Here we discover that IRE1alpha, the sensor of unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. Mechanistically, ERAD-mediated IRE1alpha degradation occurs in a Bip-dependent manner under basal conditions and is attenuated in response to ER stress. Both intramembrane hydrophilic residues of IRE1alpha and lectin protein OS9 are required for IRE1alpha degradation. ERAD deficiency causes IRE1alpha protein stabilization, accumulation and mild activation both in vitro and in vivo, leading to cellular hypersensitivity to ER stress and inflammation. Furthermore, though enterocyte-specific Sel1L-knockout mice (Sel1LΔIEC) are viable and appear normal, they are more susceptible to experimental colitis in an IRE1alpha-dependent but CHOP-independent manner. Collectively, these results demonstrate that Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1alpha signaling in vivo by managing its protein turnover.
Project description:The growth of skeletal muscle relies on a delicate equilibrium between protein synthesis and degradation; however, how proteostasis is managed in the endoplasmic reticulum is largely unknown. Here, we report that the SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation (ERAD) complex, the primary molecular machinery that degrades misfolded proteins in the ER, is vital to maintain postnatal muscle growth and systemic energy balance. Myocyte-specific SEL1L deletion blunts the hypertrophic phase of muscle growth, resulting in a net zero gain of muscle mass during this developmental period and significant reduction in overall body growth. In addition, myocyte-specific SEL1L deletion triggered a systemic reprogramming of metabolism characterized by improved glucose sensitivity, enhanced beiging of adipocytes, and resistance to diet induced obesity. These effects were partially mediated by the upregulation of the myokine FGF21. These findings highlight the pivotal role of SEL1L-HRD1 ERAD activity in skeletal myocytes for postnatal muscle growth, and its physiological integration in maintaining whole-body energy balance.