Project description:Male Sprague-Dawley rats, kept in light-controlled 12:12 conditions, presented with diurnally modulated CSF metabolite composition. This change was accompanied with differential expression of 2778 genes within the choroid plexus, with several plasma membrane transporters and CLOCK-associated genes diurnally modulated.
Project description:Atoh1-Cre; Myc/Myc mice developed choroid plexus papilloma and Atoh1-Cre; Myc/Myc; p53fl/fl mice developed choroid plexus carcinoma. By studying the gene expression profiles of normal choroid plexus, choroid plexus papilloma and choroid plexus carcinoma in mice, we aim to gain a better understanding of the biology of choroid plexus tumors
Project description:Gene expression profiles generated from human tumor cells laser-microdissected from surgical samples of seven choroid plexus papillomas (Grade I WHO) as eight samples of epithelial cells lasermicrodissected from normal choroid plexus obtained at autopsy. Choroid plexus tumors are rare pediatric brain tumors derrived from the choroid plexus epithelium. Gene expression profiles of lasermicrodissected tumor cells from 7 individual choroid plexus tumor samples obtained at surgery were compared to gene expression profiles from non-neoplastic choroid plexus epithelial cells lasermicrodissected from normal non-neoplastic choroid plexus obtained at autopsy (Am J Surg Pathol. 2006 Jan;30(1):66-74.) in order to identfy genes differentially expressed in choroid plexus tumor cells.
Project description:Choroid plexus secretes cerebrospinal fluid important for brain development and homeostasis. The OTX2 homeoprotein is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative roles for OTX2 in choroid plexus function, including cell signaling and adhesion, and show that it regulates the expression of factors secreted into cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and also affects splicing which leads to changes in mRNA isoforms of proteins implicated in oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell autonomous target regions such as visual cortex and subventricular zone, we identified putative targets involved in cell adhesion, chromatin structure and RNA processing. Thus, OTX2 retains important roles in choroid plexus function and brain homeostasis throughout life.
Project description:The cerebrospinal fluid (CSF) provides mechanical protection for the brain and serves as a brain dispersion route for nutrients, hormones, and metabolic waste. The CSF secretion rate is elevated in the dark phase in both humans and rats, which could support the CSF flow along the paravascular spaces that may be implicated in waste clearance. The similar diurnal CSF dynamics pattern observed in the day-active human and the nocturnal rat suggests a circadian regulation of this physiological variable, rather than sleep itself. To obtain a catalog of potential molecular drivers that could provide the day-night-associated modulation of the CSF secretion rate, we determined the diurnal fluctuation in the rat choroid plexus transcriptomic profile with RNA-seq and in the CSF metabolomics with ultraperformance liquid chromatography combined with mass spectrometry. We detected significant fluctuation of 19 CSF metabolites and differential expression of 2,778 choroid plexus genes between the light and the dark phase, the latter of which encompassed circadian rhythm-related genes and several choroid plexus transport mechanisms. The fluctuating components were organized with joint pathway analysis, of which several pathways demonstrated diurnal regulation. Our results illustrate substantial transcriptional and metabolic light-dark phase-mediated changes taking place in the rat choroid plexus and its encircling CSF. The combined data provide directions toward future identification of the molecular pathways governing the fluctuation of this physiological process and could potentially be harnessed to modulate the CSF dynamics in pathology.
Project description:Aggresome is a para nuclear inclusion body that functions as a storage compartment for misfolded proteins. Our previous work revealed the presence of aggresomes in pediatric choroid plexus tumors (CPT). CPTs are rare neoplasms comprised of three pathological subgroups; choroid plexus carcinoma (CPC), a grade III tumor, atypical choroid plexus papilloma (ACPP), a grade II tumor, and choroid plexus papilloma (CPP), a grade I tumor. In the current study, we aimed to investigate the prognostic value of aggresomes-positivity and its correlation to the pathological and molecular subtypes. The proteomics profiling of 21 CPT pediatric samples was investigated using ABSciex Triple TOF 5600+ mass spectrometer.
Project description:Aggresome is a para nuclear inclusion body that functions as a storage compartment for misfolded proteins. Our previous work revealed the presence of aggresomes in pediatric choroid plexus tumors (CPT). CPTs are rare neoplasms comprised of three pathological subgroups; choroid plexus carcinoma (CPC), a grade III tumor, atypical choroid plexus papilloma (ACPP), a grade II tumor, and choroid plexus papilloma (CPP), a grade I tumor. In the current study, we aimed to investigate the prognostic value of aggresomes-positivity and its correlation to the pathological and molecular subtypes. The genome-wide methylation profile of 42 CPT pediatric samples was investigated using Illumina Infinium Methylation EPIC BeadChip array.
Project description:To examine the cellular and transcriptional heterogeneity of choroid plexus tumors we determined the single nucleus transcriptomes of 23,906 nuclei from normal choroid plexus and choroid plexus tumors. The resulting cellular atlas profiles cellular and transcriptional heterogeneity, copy number alterations, and cell-cell interaction networks in normal and cancerous choroid plexus. We observe changes in choroid plexus tumor epithelial cell gene transcription that correlate with genome wide methylation profiles. In addition, we characterize tumor-grade-specific tumor microenvironments that include altered macrophage and mesenchymal cell states, as well as changes in extracellular matrix components.