Project description:We previously showed that pre-exposure of the cornea to TLR5 ligand flagellin induces profound mucosal innate protection against pathogenic microbes by reprogramming gene expression. To date, there was no genome-wide cDNA array to detect full scale of flagellin mediated reprogramming of gene expression in mucosal surface epithelial cells. Taking advantage of readily accessible, easily procurable epithelial cell population, this study is the first report to use genome-wide cDNA microarray approach to document genes associated with flagellin-induced protection against Pseudomonas aeruginosa infection in corneal epithelial cells (CECs). Total RNA obtained from isolated mouse corneal epithelial cells of the control (cells scrapped off from the corneas without infection), Pseudomonas aeruginosa infected (6 h post infection) and flagellin pretreated (24 h), followed by Pseudomonas aeruginosa infection (6 h).
Project description:Recombinant protein of Pseudomonas aeruginosa hook protein FlgE was added to cultured human corneal epithelial cell line for 4 hours and the mRNA expression profiling was performed using Agilent 8*60K array and dual labeling.
Project description:Pseudomonas aeruginosa is known to tolerate antibiotic therapy during infection. This prevents clearance of infection and negatively impacts patient outcomes. Here, we report the transcriptome sequence of antibiotic-treated and untreated P. aeruginosa cultures and the differential gene expression observed when treated cells are compared to untreated cells.
Project description:Pseudomonas aeruginosa PA3973 encodes a putative TetR family transcriptional regulator, with a helix-turn-helix motif involved in DNA binding. We applied phenotype analyses, as well as transcriptome profiling (RNA-seq), and genome-wide identification of binding sites using ChIP-seq to unravel the biological role of PA3973. The ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome, among them 139 were located in intergenic regions. The 13 bp sequence was identified as the preferential binding site of PA3973. The PA3973 regulon encompasses genes involved in stress response, including the putative PA3973-PA3970 operon. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3973 showed changes in the mRNA level of 648 genes; among them, 374 were down-regulated. Concomitantly, ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome, among them 139 were located in intergenic regions. The 13 bp sequence was identified as the preferential binding site of PA3973.
Project description:Recombinant protein of Pseudomonas aeruginosa hook protein FlgE was added to cultured human corneal epithelial cell line for 4 hours and the mRNA expression profiling was performed using Agilent 8*60K array and dual labeling. Three triplicates were included for FlgE treatment and PBS control respectively, thus producing three pairs of samples for array, namely E1PBS1, E2PBS2, E3PBS3.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:Pseudomonas aeruginosa is an opportunistic human pathogen, infecting immuno-compromised patients and causing persistent respiratory infections in people affected from cystic fibrosis. Pseudomonas strain Pseudomonas aeruginosa PA14 shows higher virulence than Pseudomonas aeruginosa PAO1 in a wide range of hosts including insects, nematodes and plants but the precise cause of this difference is not fully understood. Little is known about the host response upon infection with Pseudomonas and whether or not transcription is being affected as a host defense mechanism or altered in the benefit of the pathogen. In this context the social amoeba Dictyostelium discoideum has been described as a suitable host to study virulence of Pseudomonas and other opportunistic pathogens.