Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. In the present study we analyzed the early response of the Polyporales fungi Pycnoporus coccineus CIRM-BRFM310, Pycnoporus cinnabarinus CIRM-BRFM137 and Pycnoporus sanguineus CIRM-BRFM 1264 to various carbon sources including lignocellulosic biomass.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. In the present study we analyzed the early response of the Polyporales fungi Pycnoporus coccineus CIRM-BRFM310, Pycnoporus cinnabarinus CIRM-BRFM137 and Pycnoporus sanguineus CIRM-BRFM 1264 to various carbon sources including lignocellulosic biomass.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. In the present study we analyzed the early response of the Polyporales fungi Pycnoporus coccineus CIRM-BRFM310, Pycnoporus cinnabarinus CIRM-BRFM137 and Pycnoporus sanguineus CIRM-BRFM 1264 to various carbon sources including lignocellulosic biomass.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. In order to improve our understanding on the enzymatic mechanisms leading to lignocellulose breakdown, we analysed the early response of the white-rot fungus Pycnoporus coccineus CIRM-BRFM310 to various lignocellulosic substrates at two time points; Day 3 and Day 7.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus CIRM-BRFM310 grows well on both coniferous and deciduous wood. In the present study we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks.