Project description:XIST is a long non-coding RNA (lncRNA) that mediates transcriptional silencing of X chromosome genes. Here we show that XIST is highly methylated with at least 78 N6-methyladenosine (m6A) residues, a reversible base modification whose function in lncRNAs is unknown. We show that m6A formation in XIST, as well as cellular mRNAs, is mediated by RBM15 and its paralog RBM15B, which bind the m6A-methylation complex and recruit it to specific sites in RNA. This results in methylation of adenosines in adjacent m6A consensus motifs. Furthermore, knockdown of RBM15 and RBM15B, or knockdown of the m6A methyltransferase METTL3 impairs XIST-mediated gene silencing. A systematic comparison of m6A-binding proteins shows that YTHDC1 preferentially recognizes m6A in XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m6A. These data reveal a pathway of m6A formation and recognition required for XIST-mediated transcriptional repression. Three to four biological HEK293T replicates were used to perform iCLIP of endogenous YTH proteins, RBM15, and RBM15B. Crosslinking induced truncations were identified using CIMS-CITS pipeline.
Project description:The roles of epitranscriptomic modifications in mRNA regulation have recently received substantial attention, with appreciation growing for their phenotypically selective impacts within the animal. We adopted Drosophila melanogaster as a model system to study m6A, the most abundant internal modification of mRNA. Here, we report proteomic and functional analyses of fly m6A-binding proteins, confirming nuclear (YTHDC) and cytoplasmic (YTHDF) YTH domain proteins as the major m6A binders. Since all core m6A pathway mutants are viable, we assessed in vivo requirements of the m6A pathway in cognitive processes. Assays of short term memory revealed an age-dependent requirement of m6A writers working via YTHDF, but not YTHDC, comprising the first phenotypes assigned to Drosophila mutants of the cytoplasmic m6A reader. These factors promote memory via neural-autonomous activities, and are required in the mushroom body, the center for associative learning. To inform their basis, we mapped m6A from wild-type and mettl3 null mutant heads, allowing robust discrimination of Mettl3-dependent m6A sites. In contrast to mammalian m6A, which is predominant in 3' UTRs, Drosophila m6A is highly enriched in 5' UTRs and occurs in an adenosine-rich context. Genomic analyses demonstrate that Drosophila m6A does not directionally affect RNA stability, but is preferentially deposited on genes with low translational efficiency. However, functional tests indicate a role for m6A in translational activation, since we observe reduced nascent protein synthesis in mettl3-KO cells. Finally, we show that ectopic YTHDF can increase m6A target reporter output in an m6A-binding dependent manner, and that this activity is required for in vivo neural function of YTHDF in memory. Altogether, we provide the first tissue-specific m6A maps in this model organism and reveal selective behavioral and translational defects for m6A/YTHDF mutants.
Project description:The abundant mRNA modification N6-methyladenosine (m6A) regulates a variety of physiological processes through modulation of RNA metabolism. m6A is particularly enriched in the nervous system of several species and its dysregulation has been associated with neurodevelopmental defects as well as neural dysfunctions. In Drosophila, the loss of m6A alters fly behavior but the underlying mechanism and the role of m6A during nervous system development have remained elusive. Here we found that impairment of the m6A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify the RNA binding protein Ythdf as the main m6A reader in the nervous system required for limiting axonal growth. Mechanistically, we show that Ythdf interacts directly with Fragile X mental retardation protein (Fmr1) to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6A pathway controls development of the nervous system by modulating Fmr1 target selection.