Project description:We generated the humoral immune repertoire of circulating memory B cells from healthy and HIV infected immune donors. These repertoires were used to predict specific HIV antibodies directed against gp120/gp41.
Project description:We generated the humoral immune repertoire of circulating memory B cells from healthy and HIV infected immune donors. These repertoires were used to predict specific HIV antibodies directed against gp120/gp41.
Project description:We generated the humoral immune repertoire of circulating memory B cells from healthy and HIV infected immune donors. These repertoires were used to predict specific HIV antibodies directed against gp120/gp41.
Project description:Many human monoclonal antibodies that neutralize multiple clades of HIV-1 are polyreactive and bind avidly to mammalian autoantigens. Indeed, the generation of neutralizing antibodies to the 2F5 and 4E10 epitopes of HIV-1 gp41 in man may be proscribed by immune tolerance since mice expressing the VH and VL regions of 2F5 have a block in B-cell development characteristic of central tolerance. This developmental blockade implies the presence of tolerizing autoantigens that are mimicked by the membrane-proximal external region of HIV-1 gp41. Here we identify human kynureninase (KYNU) and splicing factor 3b subunit 3 (SF3B3) as the primary conserved, vertebrate self-antigens recognized by the 2F5 and 4E10 antibodies, respectively. 2F5 binds the H4 domain of KYNU which contains the complete 2F5 linear epitope (ELDKWA). 4E10 recognizes a conformational epitope of SF3B3 that is strongly dependent on hydrophobic interactions. Opossums carry a rare KYNU H4 domain that abolishes 2F5 binding, but retain all SF3B3 4E10 epitopes. Immunization of opossums with HIV-1 gp140 induced extraordinary titers of serum antibody to the 2F5 ELDKWA epitope but little or nothing to the 4E10 determinant. Identification of structural motif shared by vertebrates and HIV-1 provides direct evidence that immunological tolerance can impair humoral responses to HIV-1. The invitrogen protoarray that contains >9,400 recombinant human proteins was used to identify self-ligands that are recognized by broadly neutralizing HIV-1 antibodies 2F5 and 4E10. An isotype-matched human myeloma protein (151K, Southern Biotech) was used as control.
Project description:Human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin stalk of group 1 influenza A viruses (IAVs) are biased for IGHV1-69 alleles that use phenylalanine (F54) but not leucine (L54) within their CDRH2 loops. Despite this, we demonstrate that both alleles encode for human IAV bnAbs that employ structurally convergent modes of contact to the same epitope. To resolve differences in lineage-expandability, we compared F54 vs L54 as substrate within humanized mice where antibodies develop with human-like CDRH3 diversity but are restricted to single VH-genes. While both alleles encoded for bnAb precursors, only F54 IGHV1-69 supported elicitation of heterosubtypic serum bnAbs following immunization with a stalk-only nanoparticle vaccine. L54 IGHV1-69 was unproductive, co-encoding for anergic B cells and autoreactive stalk antibodies that were cleared from B cell memory. Moreover, human stalk antibodies also demonstrated L54-dependent autoreactivity. IGHV1-69 polymorphism, which is skewed ethnically, therefore gates tolerance and vaccine-expandability of influenza bnAbs.