Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Enterotoxin-producing C. perfringens type A is a common cause of food poisonings. The cpe encoding the enterotoxin can be chromosomal (genotype IS1470) or plasmid-borne (genotypes IS1470-like-cpe or IS1151-cpe). The chromosomal cpe-carrying C. perfringens are a more common cause of food poisonings than plasmid-borne cpe-genotypes. The chromosomal cpe-carrying C. perfringens type A strains are generally more resistant to most food-processing conditions than plasmid-borne cpe-carrying strains. On the other hand, the plasmid-borne cpe-positive genotypes are more commonly found in human feces than chromosomal cpe-positive genotypes, and humans seem to be a reservoir for plasmid-borne cpe-carrying strains. Thus, it is possible that the epidemiology of C. perfringes type A food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains is different. A DNA microarray was designed for analysis of genetic relatedness between the different cpe-positive and cpe-negative genotypes of C. perfringens strains isolated from human, animal, environmental and food samples. The DNA microarray contained two probes for all protein-coding sequences in the three genome-sequenced strains (C. perfringens type A strains 13, ATCC13124, and SM101). The chromosomal and plasmid-borne C. perfringens genotypes were grouped into two distinct clusters, one consisting of the chromosomal cpe-genotypes and the other consisting of plasmid-borne cpe-genotypes. Analysis of the variable gene pool complemented with the growth studies demonstrate different carbohydrate and amine metabolism in the chromosomal and plasmid-borne cpe-carrying strains, suggesting different epidemiology of the cpe-positive C. perfringens strain groups.
Project description:We report the genome-wide analysis from chromatin immunoprecipitated DNA (ChIP-sequencing) at very high resolution of the DNA binding pattern of ParBF (SopB) either on the full length plasmid F or on E. coli chromosome carrying the parSF centromere sequence. We also varied the intracellular ParBF concentration to discriminate between the several proposed mechanism of partition complexes assembly.
Project description:Horizontal gene transfer (HGT) is the major mechanism responsible for spread of antibiotic resistance. Antibiotic treatment has been suggested to promote HGT, either by directly affecting the conjugation process itself or by selecting for conjugations subsequent to DNA transfer. However, recent research suggests that the effect of antibiotic treatment on plasmid conjugation frequencies, and hence the spread of resistance plasmids, may have been overestimated. We addressed the question by quantifying transfer proteins and conjugation frequencies of a blaCTX-M-1 encoding IncI1 resistance plasmid in Escherichia coli MG1655 in the presence and absence of therapeutically relevant concentrations of cefotaxime (CTX). Analysis of the proteome by iTRAQ labeling and liquid chromatography tandem mass spectrometry revealed that Tra proteins were significantly up regulated in the presence of CTX. The up-regulation of the transfer machinery was confirmed at the transcriptional level for five selected genes. The CTX treatment did not cause induction of the SOS39 response as revealed by absence of significantly regulated SOS associated proteins in the proteome and no significant up-regulation of recA and sfiA genes. The frequency of plasmid conjugation, measured in an antibiotic free environment, increased significantly when the donor was pre-grown in broth containing CTX compared to growth without this drug, regardless of whether blaCTX-M-1 was located on the plasmid or in trans on the chromosome. The results shows that antibiotic treatment can affect expression of a plasmid conjugation machinery and subsequent DNA transfer.
Project description:High-resolution mapping of the pCAR1 plasmid transcriptomes in the original host Pseudomonas resinovorans CA10 and the transconjugant Pseudomonas putida KT2440(pCAR1) While plasmids are replicated autonomously in their hosts, the transcription of plasmid genes can be switched through horizontal transfer by the change in the transcriptional networks. To examine whether and how the plasmid genome is differentially expressed, we analyzed the transcriptomes of the 199,035-bp IncP-7 carbazole catabolic and conjugative plasmid pCAR1 in the original host Pseudomonas resinovorans CA10 and the transconjugant Pseudomonas putida KT2440(pCAR1) during growth on carbazole or succinate using the high-resolution tiling array. The tiling array successfully detected the relatively large catabolic operons, for which transcription was induced during growth on carbazole regardless of the host. Compared between the hosts, nearly identical regions of pCAR1 were transcribed, but two hypothetical operons, i.e., ORF100-108 and ORF145-146, were transcribed at higher levels in KT2440(pCAR1) than in CA10. We verified the differential expression in heterologous hosts using quantitative RT-PCR. The tiling array analysis clearly revealed the transcription start sites, for which the positions and extents agreed with the primer extension experiments. Our data demonstrate that the transcriptome of the transmissible plasmid is altered through horizontal transfer, and we identified probable genes that are involved in plasmid functions in various hosts. This approach can be used to visualize flexible prokaryotic transcriptomes comprehensively. Keywords: high-resolution RNA mapping
2008-10-18 | GSE10862 | GEO
Project description:Sequence of a fosA3- and blaCTX-M-14- co-carrying IncN-IncC plasmid and its variants
| PRJNA631125 | ENA
Project description:E. coli with blaCTX-M-15 and blaCTX-M-27 carrying plasmids