Project description:To establish the basis for understanding molecular mechanism of seed germination response to temperature, we analyzed transcriptomes in freshly harvested dormant and dry stored after-ripened seeds. The after-ripened seeds started to show visible germination from 36h after the start of imbibition, and almost all the seeds germinated after 3 days. The freshly harvested seeds stayed dormant by imbibition at 26°C, and germination of the after-ripened seeds was almost completely inhibited at 34°C. Total RNA was prepared from 0 (dry), 6 and 24h imbibed seeds to find regulatory genes of seed dormancy and germination.
Project description:We analyzed dual-transcriptome changes in germinating Arabidopsis seeds at three development stages (3, 6 and 10 days after sowing) with or without Alternaria brassicicola. Differentailly expressed genes were identified from both seed and fungus.
Project description:au13-12_polysome - transcriptome and translatome of arabidopsis wt seeds according to dormancy - Identification of transcripts that are differentially abundant (transcriptome) and transcripts that are addressed to translation (translatome) in imbibed Arabidopsis seeds in relation with dormancy. During imbibition of seeds (16h and 24h in darkness at 25°C, dormant and non-dormant seeds), transcriptome analysis is done on total RNA and translatome analysis on polysomal RNA. - At harvest seeds are dormant. They stay dormant if they are stored at -20°C (D) and become non-dormant (ND) if they are stored 3 weeks at +20°C. Arabidopsis dormant seeds do not germinate at 25°C in darkness while non-dormant seeds do. Total RNA and polysomal RNA (polysomal fractions purified on sucrose gradients) were extracted from imbibed seeds for 16h or 24h at 25°C in darkness (3 biological replicates). Transcriptome and translatome are compared for Dormant vs Non-Dormant for 16h and 24 imbibition. In silico comparison will allow to compare transcriptome and translatome for each point and type of seeds and to compare the time points (16 vs 24h) for each type of sample.
Project description:au13-12_polysome - transcriptome and translatome of arabidopsis wt seeds according to dormancy - Identification of transcripts that are differentially abundant (transcriptome) and transcripts that are addressed to translation (translatome) in imbibed Arabidopsis seeds in relation with dormancy. During imbibition of seeds (16h and 24h in darkness at 25°C, dormant and non-dormant seeds), transcriptome analysis is done on total RNA and translatome analysis on polysomal RNA. - At harvest seeds are dormant. They stay dormant if they are stored at -20°C (D) and become non-dormant (ND) if they are stored 3 weeks at +20°C. Arabidopsis dormant seeds do not germinate at 25°C in darkness while non-dormant seeds do. Total RNA and polysomal RNA (polysomal fractions purified on sucrose gradients) were extracted from imbibed seeds for 16h or 24h at 25°C in darkness (3 biological replicates). Transcriptome and translatome are compared for Dormant vs Non-Dormant for 16h and 24 imbibition. In silico comparison will allow to compare transcriptome and translatome for each point and type of seeds and to compare the time points (16 vs 24h) for each type of sample. 12 dye-swap - time course
Project description:Conidia of Aspergillus niger are characterized by a dormant state and are moderate stress-resistant. Upon contact with a moist substrate, germination of conidia occurs by changing from a dormant stabilized state towards a growing vegetative cell. The RNA expression levels of dormant conidia and conidia that were in various stages of germination were studied. The RNA composition of dormant conidia was substantially different than all the subsequent stages of germination. This indicates that the distinct morphological changes that occur during germination are not correlated with the highest change in the transcriptome. Samples of germinating conidia of Aspergillus niger N402 were taken in triple at 0h (dormant), 2h, 4h, 6h and 8h after inoculation in CM.
Project description:Wheat seed dormancy is released by after-ripening, and germination and seminal root growth of after-ripened/non-dormant seeds can be inhibited by treatment with exogenous ABA. We used Affymetrix GeneChip Wheat Genome Array to detail transcriptional programs affected by after-ripening of dormant seeds and imbibition of after-ripened seeds in ABA.
Project description:Relative expression data from germinating seeds of Columbia (wt), the pkl mutant (pkl), Columbia plus uniconazole-P (Uwt) and the pkl-mutant plus uniconazole-P (Upkl).
Project description:Genome-wide analysis was performed to assess the transcriptional landscape of germinating A. niger conidia using GeneChips. The metabolism of storage compounds during conidial germination was also examined and compared to the transcript levels from associated genes. The transcriptome of dormant conidia was shown to be highly differentiated from that of germinating conidia and major changes in response to environmental shift occurred within the first hour of germination. The breaking of dormancy was associated with increased transcript levels of genes involved in the biosynthesis of proteins, RNA turnover and respiratory metabolism. Increased transcript levels of genes involved in metabolism of nitrate and proline at the onset of germination implies their use as sources of nitrogen. Dormant conidia contained transcripts of genes involved in fermentation, gluconeogenesis and the glyoxylate cycle. The presence of such transcripts in dormant conidia may indicate the generation of energy from non-carbohydrate substrates during starvation-induced conidiation or for maintenance purposes during dormancy. The immediate onset of metabolism of internal storage compounds after the onset of germination, and the presence of transcripts of relevant genes, suggest that conidia are primed for the onset of germination.
Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development. In soybean (Glycine max), an important edible oil crop, valuable lipids are synthesized and stored in the cotyledons during embryogenesis .This storage lipids are used as energy source of the emerging seeds, during the germination procces. Until now, there are no microRNAs related to lipid metabolism in soybean or any other plant. This work aims to describe the miRNAome of germinating seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus germinating seeds. A total of 183 familes were detected through a computational analysis of a large number of reads obtained from deep sequencing from two small RNA libraries of (i) pooled germintaing seeds stages and (ii) mature soybean seeds. We have found 39 new mirna precursors which produce 41 new mature forms. The present work also have identified isomiRNAs and mirnas offset (moRNAs). This work presents a comprehensive study of the miRNA transcriptome of soybean germinating seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in lipid consumption in development soybean seeds.