Project description:Chondrichthyans (cartilaginous fishes) exhibit highly variable reproductive styles, categorized as viviparity and oviparity. Among these, species with oviparity provide an enormous potential of molecular experimentation with stable sample supply which does not demand the sacrifices of live mothers. Cartilaginous fishes are divided into two subclasses, chimaeras (Holocephali) and elasmobranchs (Elasmobranchii), and the latter consists of two monophyletic groups, Batoidea (rays, skates and torpedoes) and Selachimorpha (sharks). Here we report transcriptome assemblies of the ocellate spot skate Okamejei kenojei, produced by strand-specific RNA-seq of its embryonic tissues. We obtained a total of 325 million illumina short reads from libraries prepared using four different tissue domains and assembled them all together. Our assembly result confirmed the species authenticity and high continuity of contig sequences. Also, assessment of its coverage of pre-selected one-to-one orthologs supported high diversity of transcripts in the assemblies. Our products are expected to provide a basis of comparative molecular studies encompassing other chondrichthyan species with emerging genomic and transcriptomic sequence information.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.