Project description:In rodents, treatment with peroxisome proliferator-activated receptor alpha (PPARalpha) agonists results in peroxisome proliferation, hepatocellular hypertrophy and hepatomegaly. Drugs in the fibrate class of PPARalpha agonists have also been reported to produce rare skeletal muscle toxicity. Although target-driven hepatic effects of PPARalpha treatment have been extensively studied, a characterization of the transcriptional effects of this nuclear receptor/transcription factor on skeletal muscle responses has not been reported. In this study we investigated the effects of PPARalpha agonists on skeletal muscle gene transcription in rats. Further, since statins have been reported to preferentially effect type II muscle fibers we compared PPARalpha signaling effects between type I and type II muscles. By comparing the transcriptional responses of agonists that signal through different nuclear receptors and, using a selection/deselection analytical strategy based on ANOVA, we identified a PPARalpha activation signature that is evident in type-I (soleus) but not type II (quadriceps femoris) skeletal muscle fibers. The fiber-type selective nature of this response is consistent with increased fatty acid uptake and beta-oxidation, which represent the major clinical benefits of the hypolipidemic compounds used in this study, but does not reveal any obvious off-target pathways that may drive adverse effects. Keywords: drug response
Project description:Evidence from mRNA-Sequencing that Acute Olanzapine Infusion is Initiating a Skeletal Muscle Fiber Type Transition In Rat Gastrocnemius
Project description:Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle fiber proteins that associate with Gadd45a as it induces skeletal muscle atrophy in living mice. We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, the MAP kinase kinase kinase MEKK4. Furthermore, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into way that skeletal muscle atrophy occurs at the molecular level.