Project description:This study was performed to investigate the effect of aging and high fat diet on gut microbiota in F344 rats by the pyrosequencing method.
Project description:Investigation of the effect of chow diet integration with standard baker's yeast leavened carasau bread (SB) or with functional sourdough-leavened carasau bread (FB) on the gut microbiota of young rats.
Project description:The human intestinal microbiota associated with rats produces in vivo a soluble(s) factor(s) that down-regulates the expression of genes encoding for the Shiga toxin II in E. coli O157:H7. The Shiga toxin II is one of the major virulence factors of E. coli enterohemorragic leading to the deadly hemolitic and uremic syndrome. Investigation of the effect of the human intestinal microbiota on the whole transcriptome of EHEC O157:H7 is of major importance to increase our understanding of the pathogen transcriptomic adaptation in response to the human microbiota. We analysed by microarray hybridization the gene expression pattern of EHEC O157:H7 grown in the caecal content of germ-free rats or rats associated with the human microbiota of a healthy human subject. By doing so, we increased our understanding of the regulatory activities of the human gut microbiota on E. coli O157:H7 A first group of twelve weeks old, male, germfree rats was colonized with the human fecal microbiota and a second group was kept germfree and condidered as a controle group. Rats were fed for two weeks with a sterile human type diet, and were sacrificed. E. coli O157:H7 was cultivated for 6 hours in the caecal content of germfree rats and rats associated with the human intestinal microbiota. RNAs were extracted and cDNAs were synthesized, fragmented and biotinylated before being hybridized on Affymetrix E. coli genome 2.0 arrays. The effect of the human intestinal microbiota was investigated by comparing the gene expression level in the caecal content of rats associated with the human microbiota with their expression level in the caecal content of the germfree rats.
Project description:Fecal samples collected on day 5 from randomly selected colitic SD rats were analyzed for gut microbiota by sequencing the V4 region of the 16S rRNA gene. The orally administered Dex-P-laden NPA2 coacervate (Dex-P/NPA2) significantly restores the diversity of gut microbiota compared with colitic SD rats in the Dex-P/PBS group and the untreated colitic rats (Control).
Project description:Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Methods: Male ZDF rats at six week of age were randomly divided into two groups and administered testosterone undecanoate(TU) or vehicle alone every three days for three weeks. After three weeks, overnight fasted blood glucose and insulin concentrations were significantly higher and glucose tolerance and insulin sensitivity were impaired in TU treated ZDF rats compared to vehicle controls. Moreover, increased serum triglycerides and VLDL were observed in TU treated rats. To further explore the observed metabolic changes in TU treated ZDF rats, whole-genome microarray analysis were performed on isolated liver mRNA. Results: Array analysis revealed that many hepatic lipogenic genes were increased in male ZDF rat livers treated with TU. Interestingly, SREBP-1c, a key transcriptional activator of lipogenic genes and PGC-1 , an activator of SREBP-1c were induced while small heterodimer partner, a transcriptional inhibitor of lipogenic genes was suppressed by TU treatment. Exploring signaling pathways for these effects, we observed that the hepatic activated forms of STAT3 and AMPK, two known inhibitors of hepatic lipogenesis, were decreased in TU treated rat. Moreover, we observed that DHT could block the induction of STAT3 and AMPK phosphorylation in treated primary human hepatocytes. Preliminarily, in the leptin receptor positive zucker diabetic lean male rats, we observed that TU treatment has an oppose effect on the hepatic lipogenic genes, suggesting that hepatic leptin signaling may influence androgen signaling. Further insight into the relationship between androgen deficiency and the leptin system may help improve treatment of the metabolic syndrome. Population based studies have established that androgen deficiency in males correlates with type 2 diabetes, visceral adiposity, and metabolic syndrome. Androgen therapy has been investigated as a possible treatment regime to combat these disorders. However, the molecular mechanism of androgen effects on these diseases still remain poorly understood. The zucker diabetic fatty (ZDF) rat, containing a mutation in the leptin receptor, is a well-investigated model of obesity and type 2 diabetes. Male rats are characterized as androgen deficient and spontaneously develop obese, hyperlipidemia, hyperglycemia and hyperinsulinemia. In this study, we used ZDF male rats as a model of metabolic syndrome to investigate the effects of testosterone administration on the development of the metabolic conditions. Two-condition experiment. (1) lean ZDF rats (control) vs. lean ZDF rats (testosterone treated). (2) obese ZDF rats (control) vs. obese ZDF rats (testosterone treated). Biological replicates: 4 control replicates, 4 treated replicates.
Project description:Dietary fats have been shown to affect gut microbiota composition and aging gene transcription of middle-aged rats at a normal dose, but little is known about such an effect on gut barrier. In colon, the main component of mucus layer is Muc2, produced by the goblet cells. This study investigated the changes in Muc2 expression, goblet cells proliferation, TLRs and inflammatory cytokines in the colon of middle-aged rats. Proteome technology was applied to explore the possible molecular mechanisms. The results indicated that intake of fish oil at a normal dose downregulated colonic Muc2 expression, and this negative effect of fish oil probably involved the suppression of mucin glycosylation process.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.