Project description:The study investigated the impact of environment on the composition of the gut microbiota and mucosal immune development and function at gut surfaces in early and adult life. Piglets of similar genotype were reared in indoor and outdoor environments and in an experimental isolator facility. Mucosa-adherent microbial diversity in the pig ileum was characterized by sequence analysis of 16S rRNA gene libraries. Host-specific gene responses in gut ileal tissues to differences in microbial composition were investigated using Affymetrix microarray technology and Real-time PCR. Experiment Overall Design: Animals were reared on the sow at an outdoor or indoor facility. Additional piglets from the indoor facility were transferred to individual isolator units at 24 hours of age, and given a daily dose of antibiotic cocktail for the duration of the study. Piglets were weaned at day 28. From day 29 onwards, piglets were fed creep feed ad libitum. Ileal tissue samples were excised from N=6 piglets per group at day 5, 28 and 56.
Project description:The microbial community and enzymes in fermented rice using defined microbial starter, containing Rhizopus oryzae, Saccharomycopsis fibuligera, Saccharomyces cerevisiae and Pediococcus pentosaceus, play an important role in quality of the fermented rice product and its biological activities including melanogenesis inhibitory activity. The microbial metaproteome revealed large-scale proteins expressed by the microbial community to better understand the role of microbiota in the fermented rice.
2020-05-25 | PXD018081 | JPOST Repository
Project description:microbial community diversities of fermented feed
| PRJNA487729 | ENA
Project description:fermented feed metagenome
| PRJNA936640 | ENA
Project description:Microbial diversity study on the conversion of kitchen waste into fermented feed
Project description:Kombucha Tea (KT), a fermented tea with roots in traditional Chinese medicine, has surged in worldwide popularity due to its purported health benefits. KT contains a symbiotic culture of yeast and bacterial species, many of which are considered human probiotics. The molecular basis of the health benefits of KT has yet to be thoroughly explored in any animal model. We establishC. elegansas a model to query the molecular interactions between Kombucha-associated microbes (KTM) and the host. We find that worms have an established gut microbiome after consuming a KTM-exclusive diet that mirrors the microbial community found in the fermenting culture. Remarkably, animals consuming KTMs display strikingly reduced lipid levels, yet develop and reproduce similarly toE. coli-fed animals. Critically, consumption of a non-fermenting mix of KT microbial isolates (Kombucha microbe mix) resulted in elevated fat accumulation, suggesting that KTMs do not impair nutrient absorption. To identify the host metabolic pathways altered by KTMs, we performed mRNA-seq on KTM-fed animals, finding widespread changes in lipid metabolism genes. Specifically, we found that three lysosomal lipase genes are significantly upregulated in these animals. These lipases, LIPL-1-3, have been previously shown to promote lipophagy via catabolism of lipid droplets. Consistently, KTM-fed animals display reduced levels of triglycerides and smaller lipid droplet sizes. We propose that KTM-fed animals exhibit a fasting-like metabolic state, even in the presence of sufficient nutrient availability, possibly through induction of lipophagy. Elucidating the host metabolic response to KT consumption will provide unprecedented insight into how this popular fermented beverage may impact human health and inform its use in complementary healthcare plans.
Project description:The arsenal of genes that microbes express reflect the way in which they sense their environment. We have previously reported that the rumen microbiome composition and its coding capacity are different in animals having distinct feed efficiency states, even when fed an identical diet. Here, we reveal that many microbial populations show divergent proteome production in function of the feed efficiency state. Thus, proteomic data serve as a strong indicator of host feed efficiency state phenotype, overpowering predictions based on genomic and taxonomic information. We highlight protein production of specific phylogenies associated with each of the feed efficiency states. We also find remarkable plasticity of the proteome both in the individual population and at the community level, driven by niche partitioning and competition. These mechanisms result in protein production patterns which exhibit functional redundancy and checkerboard distribution that are tightly linked to the host feed efficiency phenotype. By linking microbial protein production and the ecological mechanisms that act within the microbiome feed efficiency states, our present work reveals a layer of complexity that bears immense importance to the current global of food security and sustainability.