Project description:The yeast protein kinases Sat4/Hal4 and Hal5 are required for the plasma membrane stability of the K+ transporter Trk1 and some amino acid and glucose permeases. The transcriptomic analysis presented here indicates alterations in the general control of both nitrogen and carbon metabolism. Accordingly, we observed reduced uptake of methionine and leucine in the hal4 hal5 mutant. This decrease correlates with activation of the Gcn2-Gcn4 pathway, as measured by expression of the lacZ gene under the control of the Gcn4 promoter. However, with the exception of methionine biosynthetic genes, few amino acid biosynthetic genes are induced in the hal4 hal5 mutant, whereas several genes involved in amino acid catabolism are repressed. Concerning glucose metabolism, we found that this mutant exhibits derepression of respiratory genes in the presence of glucose, leading to an increased activity of mitochondrial enzymes, as measured by SDH activity. In addition, the reduced glucose consumption in the hal4 hal5 mutant correlates with a more acidic intracellular pH and with low activity of the plasma membrane H+-ATPase. As a compensatory mechanism for the low glycolytic rate, the hal4 hal5 mutant overexpresses the HXT4 high affinity glucose transporter and the hexokinase genes. These results indicate that the hal4 hal5 mutant presents defects in the general control of nitrogen and carbon metabolism, which correlate with reduced transport of amino acids and glucose, respectively. A more acidic intracellular pH may contribute to some defects of this mutant.
Project description:Hexokinase 2 (Hxk2) of Saccharomyces cerevisiae is a dual function hexokinase, acting as a glycolytic enzyme and being involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by phosphorylation of Hxk2 at serine 15, which has been attributed to the protein kinase Tda1. To explore the role of Tda1 beyond Hxk2 phosphorylation, the proteomic consequences of TDA1 deficiency were investigated by difference gel electrophoresis (2D-DIGE) comparing a wild type and a Δtda1 deletion mutant. To additionally address possible consequences of glucose repression/derepression, both were grown at 2 % and 0.1 % (w/v) glucose. A total of eight protein spots exhibiting a minimum 2-fold enhanced or reduced fluorescence upon TDA1 deficiency was detected and identified by mass spectrometry. Among the spot identities are – besides the expected Hxk2 – two proteoforms of hexokinase 1 (Hxk1). Targeted proteomics analyses in conjunction with 2D-DIGE demonstrated that TDA1 is indispensable for Hxk2 and Hxk1 phosphorylation at serine 15. Thirty-six glucose-concentration-dependent protein spots were identified. A simple method to improve spot quantification, approximating spots as rotationally symmetric solids, is presented along with new data on the quantities of Hxk1 and Hxk2 and their serine 15 phosphorylated forms at high and low glucose growth conditions. The Δtda1 deletion mutant exhibited no altered growth under high or low glucose conditions or on alternative carbon sources. Also, invertase activity, serving as a reporter for glucose derepression, was not significantly altered. Instead, an involvement of Tda1 in oxidative stress response is suggested.
Project description:In response to carbon source switching from glucose to non-glucose, such as ethanol and galactose, yeast cells can directionally preprogram cellular metabolism to efficiently utilize the nutrients. However, the understanding of cellular responsive network to utilize a non-natural carbon source, such as xylose, is limited due to the incomplete knowledge on the xylose response mechanisms. Here, through optimization of the xylose assimilation pathway together with combinational evaluation of reported targets, we generated a series of mutants with varied growth ability. However, understanding how cells respond to xylose and remodel cellular metabolic network is far insufficient based on current information. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.
Project description:Saccharomyces cerevisiae developed elegant mechanisms to monitor nutrient availability and trigger adaptative responses to nutrient deficiency. Nutrient sensing requires close coordination of cell surface sensors with intracellular mechanisms. This yeast senses the presence of glucose by two modified hexose transporters, Rgt2 and Snf3 (regulating expression of genes encoding hexose transporters) and the G-protein coupled receptor Gpr1 (modulating Protein Kinase A (PKA) activity).. It has been difficult to differentiate between cellular responses mediated by cell surface and intracellular sensors, respectively. Using a strain that is devoid of glucose uptake, we show that the mere presence of glucose does not elicit any glucose-dependent transcriptional responses. This indicates that signals generated by surface sensors are not sufficient to mediate glucose-dependent transcriptional responses. Instead, intracellular glucose or metabolites derived from it are required for transcriptional changes associated with glucose exposure. We used microarrays from biological triplicate samples to measure the global transcriptional response to sudden addition of glucose to yeast cells growing at steady state on ethanol. The experiment was conducted using a strain that is devoid of glucose uptake and compared with an isogenic strain. The CEN.PK strain was used in this research. A strain with all known hexose transporters deleted (Null strain) was compared with an isogenic reference. The two strains were grown in a chemostat (D = 0.1 h-1) using ethanol as the carbon source. Transcriptional responses between the strains were measured in biological triplicates at steady state and then pulsed with glucose at time t = 0. Transcriptional response was measured again after t = 20 min to determine changes in gene expression changes only in response to the presence of glucose.