Project description:HSV-2 coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well-defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2 infected and bystander 2D10 cells. Bulk and single-cell RNA sequencing studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms including upregulation of MALAT1 to release epigenetic silencing.
Project description:HSV-2 coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well-defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2 infected and bystander 2D10 cells. Bulk and single-cell RNA sequencing studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms including upregulation of MALAT1 to release epigenetic silencing.
Project description:Herpes simplex virus type 2 (HSV-2) coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2-infected and bystander 2D10 cells. Bulk and single-cell RNA-Seq studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms, including upregulation of MALAT1 to release epigenetic silencing.
Project description:investigated the possible contribution of various cells (i.e., B cells, DCs, fibroblasts, glial cells, ILCs, macrophages, microglia, monocytes, NK cells, neurons, neutrophils, and T cells) isolated from TG of latently infected mice to HSV-1 latency
Project description:The goal of this study was to utilize CaptureSeq to be able to measure HIV-1 transcription after reversal of latency in primary cells from antiretroviral-treated HIV-1 infected individuals.
Project description:HIV infection remains incurable due to the long-term persistence of latently infected cells, capable of refueling viremia upon antiretroviral therapy interruption. Shock-and-kill strategies aim to purge this latent reservoir by inducing the expression of viral genes, making infected cells visible for cleanup by the immune system. Here, we present a Tat mRNA formulation that, when combined with panobinostat, enables latency reversal at levels >3-fold higher than those reached with the most potent mitogens. We demonstrate that this mRNA formulation does not alter the transcriptome or phenotype of CD4 T cells, enabling the ex vivo assessment of infected cells upon latency reversal in a near-native state. Taking advantage of this characteristic, we show transcriptomic and proteomic differences between infected cells upon latency reversal and non-infected cells, including the upregulation of the cytotoxic protein granzyme A and a novel long non-coding RNA. Overall, we demonstrate that a Tat mRNA formulation enables potent reactivation of latent HIV, presenting a valuable research tool for studying the inducible HIV reservoir, as well as paving the way to a more effective shock-and-kill functional cure.