Project description:Using a mouse model of lupus skin disease, we find that skin-infiltrating CD4+ and CD8+ T cells express high levels of HIF-1 and demonstrate a strong cytotoxic signature.
Project description:Using a mouse model of lupus skin disease, we find that skin-infiltrating CD4+ and CD8+ T cells express high levels of HIF-1, demonstrate a strong cytotoxic signature, and the cytotoxic signature decreases after pharmacologic HIF1 inhibition.
Project description:We performed spatial transcriptomics on a case series of different clinical subtypes of cutaneous lupus erythematosus including acute cutaneous lupus erythematosus (malar rash, systemic lupus erythematosus). Our goals were to (1) determine which differentially expressed genes (DEGs) could be attributed to specific cell populations in specific locations within the tissue, (2) determine if spatial transcriptomics could better distinguish between CLE clinical subtypes than bulk RNA approaches and (3) examine potential cell-cell communication pathways within the skin lesions.
Project description:The autoimmune disease lupus erythematosus (lupus) is characterized in part by photosensitivity, where patients can develop inflammatory skin lesions with even ambient ultraviolet radiation (UVR) exposure. Evidence points to a role for type I interferon (IFN-I) in photosensitivity, but mechanistic understanding remains limited. We have shown that photosensitivity in lupus models is at least in part attributable to Langerhans cell (LC) dysfunction. Healthy LCs limit photosensitivity via a disintegrin and metalloprotease 17 (ADAM17), a sheddase that normally limits UVR-induced skin inflammation by releasing soluble epidermal growth factor receptor (EGFR) ligands to support keratinocyte survival. On the other hand, LCs from lesional and even non-lesional lupus model skin show reduced ADAM17 activity and mRNA expression. Non-lesional human lupus skin also showed evidence of LC dysfunction, and, here, we asked how the lupus skin environment contributes to this dysfunction. We show that non-lesional skin in human CLE and multiple photosensitive lupus models share gene expression patterns consistent with a high IFN environment and LC dysfunction. IFN-I inhibits murine and human LC ADAM17 activity, and anti-IFNAR1 in lupus models restores LC ADAM17 function and reduces photosensitivity in EGFR and LC ADAM17-dependent manners. Reactive oxygen species (ROS) are a mediator of ADAM17 activity, and we show that lupus models have reduced UVR-induced LC ROS generation that is restored by anti-IFNAR1. Our findings suggest shared pathogenic mechanisms of photosensitivity in human and murine lupus skin and a model whereby the IFN-I-rich microenvironment in non-lesional lupus skin inhibits UVR-induced ADAM17 activity, predisposing to photosensitivity. Our data also suggest that the beneficial effects of the recently FDA-approved anifrolumab (anti-IFNAR1) on human lupus skin could act in part by restoring LC function.
Project description:The autoimmune disease lupus erythematosus (lupus) is characterized in part by photosensitivity, where patients can develop inflammatory skin lesions with even ambient ultraviolet radiation (UVR) exposure. Evidence points to a role for type I interferon (IFN-I) in photosensitivity, but mechanistic understanding remains limited. We have shown that photosensitivity in lupus models is at least in part attributable to Langerhans cell (LC) dysfunction. Healthy LCs limit photosensitivity via a disintegrin and metalloprotease 17 (ADAM17), a sheddase that normally limits UVR-induced skin inflammation by releasing soluble epidermal growth factor receptor (EGFR) ligands to support keratinocyte survival. On the other hand, LCs from lesional and even non-lesional lupus model skin show reduced ADAM17 activity and mRNA expression. Non-lesional human lupus skin also showed evidence of LC dysfunction, and, here, we asked how the lupus skin environment contributes to this dysfunction. We show that non-lesional skin in human CLE and multiple photosensitive lupus models share gene expression patterns consistent with a high IFN environment and LC dysfunction. IFN-I inhibits murine and human LC ADAM17 activity, and anti-IFNAR1 in lupus models restores LC ADAM17 function and reduces photosensitivity in EGFR and LC ADAM17-dependent manners. Reactive oxygen species (ROS) are a mediator of ADAM17 activity, and we show that lupus models have reduced UVR-induced LC ROS generation that is restored by anti-IFNAR1. Our findings suggest shared pathogenic mechanisms of photosensitivity in human and murine lupus skin and a model whereby the IFN-I-rich microenvironment in non-lesional lupus skin inhibits UVR-induced ADAM17 activity, predisposing to photosensitivity. Our data also suggest that the beneficial effects of the recently FDA-approved anifrolumab (anti-IFNAR1) on human lupus skin could act in part by restoring LC function.
Project description:The autoimmune disease lupus erythematosus (lupus) is characterized in part by photosensitivity, where patients can develop inflammatory skin lesions with even ambient ultraviolet radiation (UVR) exposure. Evidence points to a role for type I interferon (IFN-I) in photosensitivity, but mechanistic understanding remains limited. We have shown that photosensitivity in lupus models is at least in part attributable to Langerhans cell (LC) dysfunction. Healthy LCs limit photosensitivity via a disintegrin and metalloprotease 17 (ADAM17), a sheddase that normally limits UVR-induced skin inflammation by releasing soluble epidermal growth factor receptor (EGFR) ligands to support keratinocyte survival. On the other hand, LCs from lesional and even non-lesional lupus model skin show reduced ADAM17 activity and mRNA expression. Non-lesional human lupus skin also showed evidence of LC dysfunction, and, here, we asked how the lupus skin environment contributes to this dysfunction. We show that non-lesional skin in human CLE and multiple photosensitive lupus models share gene expression patterns consistent with a high IFN environment and LC dysfunction. IFN-I inhibits murine and human LC ADAM17 activity, and anti-IFNAR1 in lupus models restores LC ADAM17 function and reduces photosensitivity in EGFR and LC ADAM17-dependent manners. Reactive oxygen species (ROS) are a mediator of ADAM17 activity, and we show that lupus models have reduced UVR-induced LC ROS generation that is restored by anti-IFNAR1. Our findings suggest shared pathogenic mechanisms of photosensitivity in human and murine lupus skin and a model whereby the IFN-I-rich microenvironment in non-lesional lupus skin inhibits UVR-induced ADAM17 activity, predisposing to photosensitivity. Our data also suggest that the beneficial effects of the recently FDA-approved anifrolumab (anti-IFNAR1) on human lupus skin could act in part by restoring LC function.
Project description:Microarray gene expression analyses were performed on human skin samples from cutaneous lupus subtypes (SCLE and CCLE) and normal patients along with human kidney samples from lupus nephritis and normal patients
Project description:Cutaneous lupus erythematosus (CLE) is a disfiguring and poorly understood condition frequently associated with systemic lupus. Studies to date suggest that non-lesional keratinocytes play a role in disease predisposition, but this has not been investigated in a comprehensive manner or in the context of other cell populations. To investigate CLE immunopathogenesis, normal-appearing skin, lesional skin, and circulating immune cells from lupus patients were analyzed via integrated single-cell RNA-sequencing and spatial-seq. We demonstrate that normal-appearing skin of lupus patients represents a type I interferon-rich, ‘prelesional’ environment that skews gene transcription in all major skin cell types and dramatically distorts cell-cell communication. Further, we show that lupus-enriched CD16+ dendritic cells undergo robust interferon education in the skin, thereby gaining pro-inflammatory phenotypes. Together, our data provide a comprehensive characterization of lesional and non-lesional skin in lupus and identify a role for skin education of CD16+ dendritic cells in CLE pathogenesis.