Project description:In order to study the molecular response of human foreskin fibroblast (HFF) cells to E. cuniculi parasite infection, kinetics microarray experiments targeting human genes expression have been performed during the parasite whole infection cycle. Infected HFF cells (IHFF; t=4h, 16h, 48h, 72h and 120h ) were systematically compared with control uninfected HFF cells (UHFF; t=0h).
Project description:In order to study the molecular response of human foreskin fibroblast (HFF) cells to E. cuniculi parasite infection, kinetics microarray experiments targeting human genes expression have been performed during the parasite whole infection cycle. Infected HFF cells (IHFF; t=4h, 16h, 48h, 72h and 120h ) were systematically compared with control uninfected HFF cells (UHFF; t=0h). Time-dependent experiment comparing two conditions, IHFF vs. UHFF cells (data points: t=4h/0h, t=16h/0h, t=48h/0h, t=72h/0h, t=120h/0h).
Project description:Microsporidia are eukaryotic, obligate intracellular organisms defined by small spores that contain a single invasion organelle, the polar tube, which coils around the interior of the spore. When these parasites infect host cells, the polar tube is discharged from the anterior pole of the spore, pierces the cell, and transfers sporoplasm into the cytoplasm of the host. Three polar tube proteins (PTP1, PTP2, and PTP3) have been identified in this structure. The interactions of these proteins in the assembly and function of the polar tube are not known. This study was undertaken to examine the protein interactions of the Encephalitozoon cuniculi polar tube proteins (EcPTPs). Immunofluorescence and immunoelectron microscopy confirmed the colocalization of EcPTP1, EcPTP2, and EcPTP3 to the polar tube. Experiments using cross-linkers indicated that EcPTP1, EcPTP2, and EcPTP3 form a complex in the polar tube, which was confirmed by immunoprecipitation using EcPTP1 antiserum. Yeast two-hybrid analysis revealed that full-length EcPTP1, EcPTP2, and EcPTP3 interact with each other in vivo. Both the N and C termini of EcPTP1 were involved in these interactions, but the central region of this protein, which contains a repetitive motif, was not. Further studies of polar tube proteins and their structural interactions may help elucidate the formation of the polar tube during the invasion process.
Project description:Fructose bisphosphate aldolose (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources. Bioinformatic analysis of the genome of the eukaryotic microsporidian parasite Encephalitozoon cuniculi revealed an FBPA homolog. The structures of this enzyme in the presence of the native substrate FBP and also with the partial substrate analog phosphate are reported. The purified enzyme crystallized in 90 mM Bis-Tris propane pH 6.5, 18% PEG 3350, 18 mM NaKHPO(4), 10 mM urea for the phosphate-bound form and 100 mM Bis-Tris propane pH 6.5, 20% PEG 3350, 20 mM fructose 1,6-bisphosphate for the FBP-bound form. In both cases protein was present at 25 mg ml(-1) and the sitting-drop vapour-diffusion method was used. For the FBP-bound form, a data set to 2.37 Å resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group C222(1), with unit-cell parameters a=121.46, b=135.82, c=61.54 Å. The structure was refined to a final free R factor of 20.8%. For the phosphate-bound form, a data set was collected to 2.00 Å resolution. The space group was also C222(1) and the unit-cell parameters were a=121.96, b=137.61, c=62.23 Å. The structure shares the typical barrel tertiary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. The quaternary structure is dimeric. This work provides a direct experimental result for the substrate-binding conformation of the product state of E. cuniculi FBPA.
Project description:BACKGROUND:Encephalitozoon cuniculi is an important microsporidian parasite with zoonotic potential. The present study highlights the impact of encephalitozoonosis on rabbit health in Egypt. Three rabbit farms in Giza, with a total of 16,400 rabbits were investigated due to occurrence of rabbits displaying clinical signs consistent with encephalitozoonosis. RESULTS:Clinical signs observed during a 4 months observation period in 2018 included vestibular disease, paresis, limb paralysis, cataracts, phacoclastic uveitis, frequent urination, marked decrease in body weight and in some pregnant females, also repeated abortions. The total morbidity rates in adult and young rabbits were 76.7% and 81.5%, respectively. The highest mortality rate was recorded in offspring (12.3%), followed by dams (5.6%), and the lowest recorded mortality rate was in males (0.04%). Post-mortem findings included enteritis, pale enlarged kidneys, congested leptomeninges, focal brain necrosis, and endometrial congestion. Histopathological examination revealed nonsuppurative meningoencephalitis and glial nodules with central necrosis in the brain, vacuolation and necrosis of renal tubular epithelium, and corneal ulceration and ruptured lens capsule with fragmentation of lenticular fibres. E. cuniculi were observed in the brain, retinal ganglion cells, kidneys, and liver. Transmission electron microscopy examination revealed the presence of different developmental stages of E. cuniculi in the brain and kidney. Presence of E. cuniculi was confirmed by conventional polymerase chain reaction using a universal 16S gene for Encephalitozoon spp. followed by sequencing and sequence analysis. CONCLUSIONS:The presence of E. cuniculi in rabbits was confirmed at three farms in Egypt. Nervous signs and ocular lesions were the most predominant findings in these farms.
Project description:To identify accessible chromatin regions in the human host cells during Toxoplasma parasite infection (uninfected, RH-infected and Pru-infected human foreskin fibroblasts) and in the obligate intracellular parasite Toxoplasma gondii (Type 1 RH strain and Type 2 Pru strain), ATAC-seq was performed.