Project description:we analyzed the characteristics of the respiratory microbiome, which was collected from different sites and using different sampling methods.
Project description:Seasonal influenza outbreaks represent a large burden for the healthcare system as well as the economy. While the role of the microbiome in the context of various diseases has been elucidated, the effects on the respiratory and gastrointestinal microbiome during influenza illness is largely unknown. Therefore, this study aimed to characterize the temporal development of the respiratory and gastrointestinal microbiome of swine using a multi-omics approach prior and during influenza infection. Swine is a suitable animal model for influenza research, as it is closely related to humans and a natural host for influenza viruses. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae families in the upper respiratory tract. To our surprise, temporal development of the respiratory microbiome was not affected. Furthermore, we observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, we found increased abundances of Prevotellaceae, while Clostridiaceae and Lachnospiraceae decreased. Furthermore, metaproteomics showed that the functional composition of the microbiome, known to be robust and stable under healthy conditions, was heavily affected by the influenza infection. Metabolome analysis proved increased amounts of short-chain fatty acids in the gastrointestinal tract, which might be involved in faster recovery. Furthermore, metaproteome data suggest a possible immune response towards flagellated Clostridia induced during the infection. Therefore, it can be assumed that the respiratory infection with IAV caused a systemic effect in the porcine host and microbiome.
Project description:Pulmonary fibrosis is a chronic progressive and often fatal disease. The pathogenesis is characterized by aberrant repair and remodeling of the lung parenchyma resulting in loss of physiological homeostasis, respiratory failure and death. The immune response in pulmonary fibrosis is dysregulated. The gut microbiome is a key regulator of immunity. The role of the gut microbiome in regulating the pulmonary immunity in lung fibrosis is unknown. Here, we have utilized a strategy of cage randomization to study how the horizontal transmission of gut microbiome influences the development of pulmonary fibrosis.
Project description:Respiratory epithelium interact with our microbiome as well as environmental bacteria, and are critical in maintaining homeostasis in face of disruption such as injury or infection. Here we investigate the impact of a filamentous bacteriophage on responses of these cells to bacterial stimulus.
Project description:We explore whether a low-energy diet intervention for Metabolic dysfunction-associated steatohepatitis (MASH) improves liver disease by means of modulating the gut microbiome. 16 individuals were given a low-energy diet (880 kcal, consisting of bars, soups, and shakes) for 12 weeks, followed by a stepped re-introduction to whole for an additional 12 weeks. Stool samples were obtained at 0, 12, and 24 weeks for microbiome analysis. Fecal microbiome were measured using 16S rRNA gene sequencing. Positive control (Zymo DNA standard D6305) and negative control (PBS extraction) were included in the sequencing. We found that low-energy diet improved MASH disease without lasting alterations to the gut microbiome.
Project description:We preformed a systems biological assessment of lower respiratory tract host immune responses and microbiome dynamics in COVD-19 patients, using bulk RNA-sequencing, single-cell RNA sequencing, and techniques, and microbiome analysis. Are focus was on differential gene expression in severe COVID-19 patients who developed ventilator associated pneumonia (VAP) during their course versus severe COVID-19 patients who did not develop VAP. We found early impairment in antibacterial immune signaling in patients two or more weeks prior to the development of VAP, compared to COVID-19 patients who did not develop VAP. There was no signficant difference in viral load, but an association of disruption in lung microbiome by alpha and beta diversity metrics was also found.