Project description:We used long-oligonucleotide microarrays to investigate whether alternative splicing in Drosophila is regulated in a sex-, stage-, or tissue-specific manner. To examine sex-specific splicing, we compared gene expression profiles of male and female pupae 12 hours after pupariation. To examine stage-specific splicing, we compared expression profiles of mixed-sex, 0-24 hour old embryos and mixed-sex, 12 hour old pupae. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens 24-48 hours after eclosion. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens at 24-48 hours after eclosion. Keywords: tissue-specific expression profiles
Project description:We used long-oligonucleotide microarrays to investigate whether alternative splicing in Drosophila is regulated in a sex-, stage-, or tissue-specific manner. To examine sex-specific splicing, we compared gene expression profiles of male and female pupae 12 hours after pupariation. To examine stage-specific splicing, we compared expression profiles of mixed-sex, 0-24 hour old embryos and mixed-sex, 12 hour old pupae. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens 24-48 hours after eclosion. To examine tissue-specific splicing, we compared expression profiles of adult male heads and abdomens at 24-48 hours after eclosion. Keywords: tissue-specific expression profiles Drosophila isogenic line WI89 was used. Mixed-sex, mixed-stage embryos were harvested from plates on which females had been allowed to oviposit for 24 hours. To obtain synchronized cohorts of pupae, male and female white prepupae were collected at 0-1 hour after pupariation and aged for 12 hours at 25C. Mixed-sex pupal samples were generated by mixing equal amount of male and female pupal RNA. Adult heads and abdomens were dissected from 24-48 hour old males. mRNA was isolated and labeled without amplification.
Project description:Many multi-exon genes are subject to alternative splicing, which is thought to increase phenotypic complexity by allowing a single locus to produce multiple functionally distinct proteins. However, genetic and developmental variation in alternative splicing has never been examined systematically. We therefore undertook a genome-wide analysis of sex- and genotypic-specific splicing in Drosophila in conjunction with sex- and line-specific transcription. Keywords: microarray, sexual dimorphism, alternative splicing, genetical genomics, genetic variation
Project description:We sequenced mRNA from head tissue of females and male of Drosophila melanogaster to identify genes differentially expressed between the sexes and sex-specific alternative splicing events. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:We sequenced mRNA from head tissue of females and male of Drosophila melanogaster to identify genes differentially expressed between the sexes and sex-specific alternative splicing events. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf Comparison of expression profiles in female and male head tissue from D. melanogaster
Project description:Flipping the switch on Sex-lethal expression: Sister of Sex-lethal antagonizes Sxl-dependent alternative splicing to maintain a male-specific gene expression pattern in Drosophila (iCLIP)
Project description:Flipping the switch on Sex-lethal expression: Sister of Sex-lethal antagonizes Sxl-dependent alternative splicing to maintain a male-specific gene expression pattern in Drosophila (RIP-Seq)