Project description:We sampled skin and blubber from 6 fin whale (Balenoptera physalus) individuals living in the northern Mediterranean Sea. Blubber was analyzed for Organochlorines levels while genomic DNA extracted from the skin of the animals with the lowest (mean value = 19 µg/g lipid basis, l.b.) (group 1, n=3) and the highest (mean value = 53 µg/g l.b.) (group 2, n=3) levels of contaminants were used for DNAm profiling through reduced representation bisulfite sequencing (RRBS).
Project description:Our paper presents the results of a study in which we used whole genome bisulfite sequencing (WGBS), RNA-Seq (i.e. transcriptomics), high-CO2 physiology experiments, and spatiotemporally separated samples isolated in situ (i.e. directly from the ocean) to examine the metabolic potential of genome-wide cytosine (5mC) methylation (i.e. epigenomics), its potential impacts to transcriptional dynamics under both present-day and future ocean acidification conditions, and its biogeographic conservation in the globally-significant, biogeochemically-critical marine cyanobacterium Trichodesmium.
Project description:Our paper presents the results of a study in which we used whole genome bisulfite sequencing (WGBS), RNA-Seq (i.e. transcriptomics), high-CO2 physiology experiments, and spatiotemporally separated samples isolated in situ (i.e. directly from the ocean) to examine the metabolic potential of genome-wide cytosine (5mC) methylation (i.e. epigenomics), its potential impacts to transcriptional dynamics under both present-day and future ocean acidification conditions, and its biogeographic conservation in the globally-significant, biogeochemically-critical marine cyanobacterium Trichodesmium.
Project description:Subspecies of the Atlantic killifish, Fundulus heteroclitus, differ in their maximum thermal tolerance. To determine whether there is a link between the heat shock response (HSR) and maximum thermal tolerance, we exposed 20ºC acclimated killifish from these subspecies to a 2hr heat shock at 34ºC and examined gene expression during heat shock and recovery using real time quantitative PCR and a heterologous cDNA microarray designed for salmonid fishes. Keywords: Expression profiling by array Microarray analyses were performed on four individual fish per subspecies of killifish (northern and southern) prior to heat shock (control) and after 60 minutes of heat shock, hybridized (one slide per individual) against a common reference RNA pool composed of an equal amount of RNA from all samples in the analysis.
Project description:Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge. The disease diagnosis relies mainly on clinical practice that can be coupled to serological or molecular diagnostics. However the relatively low sensitivity and specificity of the available Lyme diagnostics indicate the urgent need to identify additional highly antigenic borrelial proteins or to develop new strategies of diagnostic. As the skin constitutes a key interface where the pathogens can persist and multiply, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery Ge-LC-MS/MS approach on a murine model infected by B. burgdorferi sensu stricto. This dataset contains all the results concerning this approach.