Project description:The microbial community and enzymes in fermented rice using defined microbial starter, containing Rhizopus oryzae, Saccharomycopsis fibuligera, Saccharomyces cerevisiae and Pediococcus pentosaceus, play an important role in quality of the fermented rice product and its biological activities including melanogenesis inhibitory activity. The microbial metaproteome revealed large-scale proteins expressed by the microbial community to better understand the role of microbiota in the fermented rice.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. 140 samples total. Evaluation of changes in a model community's structure over time after exposure to a consortium of 5 fermented milk product (FMP) strains.
Project description:Major depressive disorder is caused by gene-environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the mechanisms by which the gut microbiota modulates depression remain elusive. Herein, we detected the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs) and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level. We also performed functional analysis to explore the microbial-regulated pathological mechanisms of depression. Two hundred mRNAs, 358 lncRNAs and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differentially expressed mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting the differentially expressed mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, we constructed a microbial-regulated lncRNA-miRNA-mRNA network based on RNA-RNA interactions. According to the competitive endogenous RNA hypothesis, two neurodevelopmental ceRNA sub-networks implicating in depression were identified. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
Project description:The study investigated the impact of environment on the composition of the gut microbiota and mucosal immune development and function at gut surfaces in early and adult life. Piglets of similar genotype were reared in indoor and outdoor environments and in an experimental isolator facility. Mucosa-adherent microbial diversity in the pig ileum was characterized by sequence analysis of 16S rRNA gene libraries. Host-specific gene responses in gut ileal tissues to differences in microbial composition were investigated using Affymetrix microarray technology and Real-time PCR. Experiment Overall Design: Animals were reared on the sow at an outdoor or indoor facility. Additional piglets from the indoor facility were transferred to individual isolator units at 24 hours of age, and given a daily dose of antibiotic cocktail for the duration of the study. Piglets were weaned at day 28. From day 29 onwards, piglets were fed creep feed ad libitum. Ileal tissue samples were excised from N=6 piglets per group at day 5, 28 and 56.
Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health. Hybridization of the samples against a common reference of gDNA isolated from L. plantarum 299v
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This series includes gene expression in the ileum of control, antibiotics (ABx)-treated, germfree, germfree-ABx-treated and mice colonized with normal or Abx-resistant microbiota. common reference design with a pool of small intestine RNA labeled with Cy3
Project description:Pu-erh tea has attracted increasing attention worldwide because of its special flavor and health effects, but its impact on composition and function of the gut microbiota remains unclear. The aim of this study was to investigate effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and metaproteomic investigation of the microbial communities in cecal samples taken from obese rats administrated with or without extracts of raw and ripe Pu-erh tea. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that, despite differences in the chemical compositions of the raw and ripe Pu-erh tea, administration of either at two different doses (0.15 and 0.40 g/Kg body weight), significantly (P<0.05) increased community diversity, and changed the composition of the cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes including sucrose metabolism, glycolysis, syntheses of proteins, rRNA and antibiotics were significantly (P<0.05), or had a tendency (0.10<P<0.05) to be, promoted by enriching relevant enzymes. Furthermore, evidences from population, molecular and metabolic levels have shown that polyphenols of raw Pu-erh tea and their metabolites can promote potentially the growth of Akkermansia municiphila by stimulating the type II and III secretion system protein, elongation factor Tu, and glyceraldehyde-3-phosphate dehydrogenase. This study has provided new evidences for the prebiotic effects of Pu-erh tea.
Project description:The gut microbiota is an essential contributor to human health and disease and offers an extensive resource of enzymes. Although functional metagenomics methods could predict a correlation between enzyme abundance and functional activity, many enzymes in the microbiome still remain uncharacterized. To discover the differing activities between similar annotated proteins in microbiome, approaches capable of detecting biochemical activity with identification of responsible microbes and enzymes are needed. α-Galactosidases (AGALs) are abundant in the host gut microbiota for hydrolysis of galactooligosaccharides, galactose-containing polysaccharides and glycoconjugates, and have multiple biotechnological applications with increasing demand of global AGAL market, such as food ingredients, animal feed, and biomedical sectors. However, many gut microbial AGALs still lack functional biochemical identification, which limits their usage in industrial and therapeutic applications.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.