Project description:We reported the microbial communities in wastewater between conventional membrane bioreactor (MBR) system and biofilm MBR system using Illumina sequencing.
Project description:Membrane bioreactor (MBR) systems are typically known different from conventional activated sludge (CAS) systems in operational parameters, while current knowledge of their microbial differentiations is barely sufficient. To this end, the current study was launched to address the differences of the overall functional genes of an oxidation ditch (OD) and an MBR running parallelly at full-scale using a functional gene array-GeoChip 4.2. Two full-scale wastewater treatment systems applying the processes of oxidation ditch (OD) and membrane bioreactor (MBR) were investigated. They treated identical wastewater at the same scale. 12 mixed-liquor suspended sludge (MLSS) samples collected daily on 12 consecutive days from each system were analyzed by GeoChip 4.2.
Project description:Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to boost biomass growth in all wastewater samples. In anaerobic conditions, the indigenous microbial community bio-augmented with B. subtilis was able to rapidly remove nitrate from wastewater. In these conditions, B. subtilis overexpressed nitrogen assimilatory and respiratory genes including NasD, NasE, NarG, NarH, and NarI, which arguably accounted for the observed boost in denitrification. Next, we attempted to use the the ammonium- and nitrate-enriched wastewater samples bio-augmented with B. subtilis in the cathodic compartment of bioelectrochemical systems (BES) operated in anaerobic condition. B. subtilis only had low relative abundance in the microbial community, but bio-augmentation promoted the growth of Clostridium butyricum and C. beijerinckii, which became the dominant species. Both bio-augmentation with B. subtilis and electrical current from the cathode in the BES promoted butyrate production during fermentation of glucose. A concentration of 3.4 g/L butyrate was reached with a combination of cathodic current and bio-augmentation in ammonium-enriched wastewater. With nitrate-enriched wastewater, the BES effectively removed nitrate reaching 3.2 mg/L after 48 h. In addition, 3.9 g/L butyrate was produced. We propose that bio-augmentation of wastewater with B. subtilis in combination with bioelectrochemical processes could both boost denitrification in nitrate-containing wastewater and enable commercial production of butyrate from carbohydrate- containing wastewater, e.g. dairy industry discharges. These results suggest that B. subtilis bio-augmentation in our BES promotes simultaneous wastewater treatment and butyrate production.