Project description:Akt is a serine/threonine protein kinase that is activated by a variety of growth factors or cytokines in a PI3-kinase dependent manner. Using a conditional transgenic system in which Akt signaling can be turned on or off in the adult heart, we have recently demonstrated that short-term Akt activation induces a ‘physiological’ form of cardiac hypertrophy with enhanced coronary angiogenesis and maintained contractility. Here we tested the hypothesis that induction of physiological hypertrophy by short-term Akt activation might improve contractile function in failing hearts. When Akt signaling was transiently activated in murine hearts with impaired contractility induced by pressure overload or adriamycin treatment, contractile dysfunction was attenuated in both cases. Importantly, improvement of contractility was observed before the development of cardiac hypertrophy, indicating that Akt improves contractile dysfunction independently of its growth-promoting effects. To gain mechanistic insights into Akt-mediated positive inotropic effects, transcriptional profiles in the heart were determined in a pressure overload-induced heart failure model. Biological network analysis of differentially expressed transcripts revealed significant alterations in the expression of genes associated with cell death, and these alterations were reversed by short-term Akt activation. Thus, short-term Akt activation improves contractile dysfunction in failing hearts. This beneficial effect of Akt on contractility is hypertrophy-independent and may be mediated in part by inhibition of cell death associated with heart failure. Keywords: transgenic mice, Akt1, cardiac hypertrophy after ascending aortic constriction and contractile dysfunction, DNA microarrays
Project description:Background: Despite its functional importance in various fundamental bioprocesses, the studies of N6-methyladenosine (m6A) in the heart are lacking. Methods: We performed methylated (m6A) RNA immunoprecipitation sequencing (MeRIP-seq) to map transcriptome-wide m6A in healthy and failing hearts. Results: Improving expression of FTO in failing mouse hearts attenuated the ischemia-induced increase in m6A and decrease in cardiac contractile function. This is carried out by the demethylation activity of FTO, which selectively demethylates cardiac contractile transcripts Conclusion: Collectively, our study demonstrates the functional importance of FTO-dependent cardiac m6A methylome in cardiac contraction during heart failure and provides a novel mechanistic insight into the therapeutic mechanisms of FTO.
Project description:Cardiac-specific PPARalpha transgenic (Tg-PPARalpha) mice show mild cardiac hypertrophy and systolic dysfunction. The failing heart phenotypes observed in Tg-PPARalpha are exacerbated by crossing with cardiac-specific Sirt1 transgenic (Tg-Sirt1) mice, whereas Tg-Sirt1 mice themselves do not show any cardiac hypertrophy or systolic dysfunction. To investigate the mechanism leading to the failing heart phenotypes in TgPPARalpha/Tg-Sirt1 bigenic mice, microarray analyses were performed. The microarray analyses revealed that many ERR target genes were downregulated in Tg-PPARalpha and in Tg-Sirt1, and they were further downregulated in the Tg-PPARalpha/Tg-Sirt1 bigenic mice. Four groups of cardiac-specific transgenic mice were used for the study, i.e., control, PPARalpha, Sirt1 and PPARalpha/Sirt1. Hearts were dissected after 10-11 weeks of male FVB background transgenic mice. Total RNA was prepared from the hearts to conduct the microarray analyses.
Project description:In ischemic cardiomyopathy (ICM), left ventricular systolic dysfunction leads to reduced blood flow and oxygen supply to the heart. Alterations in sarcomeric protein function and expression play prominent roles in the onset and progression of cardiomyopathies; however, the molecular mechanisms underlying ICM remain poorly defined. Herein, we have implemented a top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics method for the simultaneous quantification of sarcomeric protein expression and modifications in non-failing donor (n = 16) compared to end-stage failing ICM (n = 16) human cardiac tissues. Our top-down proteomics platform provided a “bird’s eye view” of proteoform families with high mass accuracy and reproducibility. In addition, quantification of post-translational modifications (PTMs) and expression reveal significant changes in various sarcomeric proteins extracted from ICM tissues. Changes include altered phosphorylation and expression of cardiac troponin I (cTnI) and enigma homolog 2 (ENH2) as well as a marked increase in muscle LIM protein (MLP) and calsarcin-1 phosphorylation in ICM hearts. Our results imply that the contractile apparatus of the sarcomere is severely dysregulated during ICM. Thus, this study is the first to uncover significant molecular changes to multiple sarcomeric proteins in end-stage ischemic heart failure patients using LC-MS-based top-down proteomics.
Project description:To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, 12/15 lipoxygenase (12/15-LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that 12/15-LOX transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in 12/15-LOX transgenic mice with advancing age, and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein-1 (Mcp-1) was up-regulated in 12/15-LOX transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenotic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells, but not in cardiomyocytes. Inhibition of Mcp-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in 12/15-LOX transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac Mcp-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition. Heart failure is still one of the leading causes of death worldwide. Therefore, it is important to elucidate the underlying mechanisms of heart failure and develop more effective treatments for this condition. To clarify the molecular mechanisms of heart failure, we performed microarray analysis using cardiac tissue samples obtained from a hypertensive heart failure model (Dahl salt-sensitive rats). ~300 genes showed significant changes of expression in the failing hearts compared with control hearts. Among the genes analyzed, 12/15-lipoxygenase (12/15-LOX) was most markedly up-regulated in failing hearts compared with control hearts .
Project description:Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrial-targeted nuclear genes in concert with reduced signaling via PPARα/PGC-1α and other transcriptional regulators. In cultured myocytes Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO, but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. Three samples per group of 8-week-old wild-type or transgenic mice with cardiac-specific constitutive expression of an activated Akt (caAkt) in the heart at 8 weeks of age were used. Mice have been previously described in depth (Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF, Cantley LC, Izumo S. 2002. Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol. 22:2799-2809.). After hearts were removed total myocardial RNA was labeled and processed as described below for microarray analysis to detail the global changes in gene expression underlying development of heart failure in this mouse model.
Project description:To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, a tetracycline-regulated transgenic system to conditionally switch a constitutively-active form of the Akt1 protein kinase on or off in the adult heart was developed. Short-term activation (2 weeks) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 weeks) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 weeks after transgene induction, 2 weeks of transgene induction followed by 2 days of repression, 6 weeks after transgene induction and 6 weeks of transgene induction followed by 2 weeks of repression. Acute over expression of Akt1 (2 weeks) leads to changes in the expression of 826 transcripts relative to non-induced hearts, whereas chronic induction (6 weeks) led to changes in the expression of 1611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified were uniquely regulated during heart regression but not growth, indicating that non-overlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure. Keywords: transgenic mice, Akt1, time course, cardiac hypertrophy and contractile dysfunction, DNA microarrays
Project description:BACKGROUND: Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS: We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS: We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS: These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.
Project description:Dysregulation of ER has been linked with increased metabolic and cardiovascular disease risk. Uncovering the impact of ERα deficiency in specific tissues has implications for understanding the role ERα in normal physiology and disease, the increased disease risk in postmenopausal women, and the design of tissue-specific ERα-based therapies for a range of pathologies including cardiac disease and cancer. Cardiac myocyte-specific ER knockout mice (ERHKO) were generated to assess the role of ERα in the heart. Female ERHKO mice displayed a mild cardiac phenotype, but unexpectedly, the most striking phenotype was obesity in female ERHKO but not male ERHKO mice. We identified contractile dysfunction, metabolic and lipid dysregulation in hearts of female ERHKO mice. We also show that extracellular vesicles (EVs) collected from the perfusate from Langendorff-isolated hearts from female ERHKO mice contained distinct proteins with functions related to muscle, metabolic and fatty acid dysregulation.
Project description:To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, a tetracycline-regulated transgenic system to conditionally switch a constitutively-active form of the Akt1 protein kinase on or off in the adult heart was developed. Short-term activation (2 weeks) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 weeks) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 weeks after transgene induction, 2 weeks of transgene induction followed by 2 days of repression, 6 weeks after transgene induction and 6 weeks of transgene induction followed by 2 weeks of repression. Acute over expression of Akt1 (2 weeks) leads to changes in the expression of 826 transcripts relative to non-induced hearts, whereas chronic induction (6 weeks) led to changes in the expression of 1611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified were uniquely regulated during heart regression but not growth, indicating that non-overlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure. Experiment Overall Design: Gene expression data from DTG-positive mouse hearts were examined before the induction of the transgene Akt1 (time point 1), 2 weeks after the induction of the transgene Akt1(time point 2), 2 weeks after the induction of the transgene Akt1 and 2 days after the repression of the transgene Akt1 (time point 3), 6 weeks after the induction of the transgene Akt1(time point 4) and 6 weeks after the induction of the transgene Akt1 and 2 weeks after the repression of the transgene Akt1 (time point 5). N = 3 to 4 sets of independent hybridizations from individual mice were performed for each time point.