Project description:Here we generated the complete mitochondrial genome of one subspecies of R. affinis (R. affinis himalayanus) using next generation sequencing and Sanger sequencing. The length of the complete mitochondrial genome was 16,886 bp, containing 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a non-coding control region. A maximum-likelihood tree based on the 13 concatenated mitochondrial protein-coding genes of 16 Rhinolophus taxon and one outgroup Hipposideros armiger indicates that R. affinis shows a closer relationship with R. sinicus complex than with other taxa.
Project description:BACKGROUND:Rhinolophusaffinis sensu lato isdistributed throughout Southeast Asia. The taxonomic status of forms attributed to the species is unclear due to the limited sample size with incomplete datasets and the taxa have high variation in morphology and echolocation call frequency. The aim of the study was to evaluate the distribution and taxonomic status of the subspecific forms of R. affinis in mainland Southeast Asia using large sample size with multiple datasets, including morphological, acoustic, and genetic data, both to elucidate taxonomic relationships and to test for congruence between these datasets. RESULTS:Three morphological forms were confirmed within the region; two concur with previously recognized taxa, namely R.affinis macrurus andR.affinis superans,and are strongly supported by morphological and genetic data. The third form is morphologically distinct, but its taxonomic status remains unclear. It is probable that this third form represents a distinct taxonomic entity; however, more data are required to confirm this. R. a. macrurus is known from the north of peninsular Thailand, Cambodia, Myanmar, Laos, and Vietnam (Indochinese subregion); R. a. superans is found throughout the Thai-Malay Peninsula (Sundaic subregion); whilst the third form is presently known from east central Myanmar (Shan state) and lower northern Vietnam (Nghe An Province). CONCLUSIONS:Our results suggest that at least three morphological forms occur in mainland Southeast Asia including one form which appears to be new to science. Echolocation call data for R. affinis are not a robust taxonomic tool as it shows a significant degree of variation which is not explained or supported by genetic and morphological findings. This study highlights significant levels of morphological variation in mainland Southeast Asia and provides an essential basis for further studies aiming to understand the population genetics, phylogeography, and taxonomy of the species.
Project description:BACKGROUND:Hybrid zones formed by the secondary contact of divergent lineages represent natural laboratories for studying the genetic basis of speciation. Here we tested for patterns of differential introgression among three X-linked and 11 autosomal regions to identify candidate loci related to either reproductive isolation or adaptive introgression across a hybrid zone between two Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis: R. a. himalayanus and R. a. macrurus. RESULTS:Our results support the previous suggestion that macrurus formed when a third subspecies (R. a. hainanus) recolonized the mainland from Hainan Island, and that himalayanus is the ancestral taxon. However, this overall evolutionary history was not reflected in all loci examined, with considerable locus-wise heterogeneity seen in gene tree topologies, levels of polymorphism, genetic differentiation and rates of introgression. Coalescent simulations suggested levels of lineage mixing seen at some nuclear loci might result from incomplete lineage sorting. Isolation with migration models supported evidence of gene flow across the hybrid zone at one intronic marker of the hearing gene Prestin. CONCLUSIONS:We suggest that phylogenetic discordance with respect to the species tree seen here is likely to arise via a combination of incomplete lineage sorting and a low incidence of introgression although we cannot rule out other explanations such as selection and recombination. Two X-linked loci and one autosomal locus were identified as candidate regions related to reproductive isolation across the hybrid zone. Our work highlights the importance of including multiple genomic regions in characterizing patterns of divergence and gene flow across a hybrid zone.