Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:Here, we established a successive Fe0-enhanced microbe system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) in whole genome transcriptional level. Comparing with the treatment without ZVI, approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced microbial azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that induced [Ni-Fe] H2ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced azo reduction in S. decolorationis S12 and lays a foundation for further optimization of integrated ZVI-microbial system for efficient organic pollution treatment.
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:Two parallel anaerobic digestion lines were designed to match a "bovid-like" digestive structure. Each of the lines consisted of two Continuous Stirred Tank Reactors placed in series and separated by an acidic treatment step. The first line was inoculated with industrial inocula whereas the second was seeded with cow digestive tract contents. After three month of continuous sewage sludge feeding, samples were recovered for shotgun metaproteomic and DNA-based analysis. Strikingly, protein inferred and 16S rDNA tags based taxonomic community profiles were not fully consistent. Principal Component analysis however revealed a similar clustering pattern of the samples, suggesting that reproducible methodological and/or biological factors underlie this observation. The performances of the two digestion lines did not differ significantly and the cow derived inocula did not establish in the reactors. A low throughput metagenomic dataset (3.4x106 reads, 1.1 Gb) was also generated for one of the samples. It allowed a substantial increase of the analysis depth (increase of the spectral identification rate). For the first time, a high level of proteins expressed by members of the "Candidatus Competibacter" group is reported in an anaerobic digester, a key microbial player in environmental bioprocess communities.
2015-08-12 | PXD002420 | Pride
Project description:Shotgun Metagenomic Sequencing Analysis of Soil Microcosms