Project description:Dendritic cells (DC) play a pivotal regulatory role in activation of the innate as well as the adaptive part of the immune system by responding to environmental microorganisms. We have previously shown that some lactobacilli strains induce a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC. Contrary, bifidobacteria do not induce IL-12, but are able to inhibit the IL-12 production induced by lactobacilli. In the present study, genome wide microarrays were used to investigate the maturation and gene expression pattern murine bone marrow derived DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, multiple virus defence genes, and cytokine and chemokine genes related to both the adaptive and the innate immune response. Contrary, B. bifidum Z9 mostly up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the genes initiating the adaptive immune response induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and some Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a key regulator in cell signalling, was one of the few genes only induced by B. bifidum Z9. Blocking of the JNK1/2 pathway completely inhibited the gene expression of Ifn-β. We suggest that B. bifidum Z9 employs an active mechanism to inhibit induction of genes in DC triggering the adaptive immune system and that JPD2 is involved in the regulatory mechanism. In the experiment saline control, Lactobacillus acidophilus NCFM, Bifidobacterium bifidum Z9 or both bacteria were were added to murine dendritic cells and stimulated for 10 hours. Experiments were run in triplicates and analyzed in a Two-way ANOVA design.
Project description:Analysis of gene expression in Caco-2 intestinal epithelial cells stimulated with Bifidobacterium bifidum PRL2010. We used microarrays to investigate gene expression in intestinal epithelial cells in response to Bifidobacterium bifidum PRL2010, in particular genes involved in mucin pathways.
Project description:Analysis of gene expression in Caco-2 intestinal epithelial cells stimulated with Bifidobacterium bifidum PRL2010. We used microarrays to investigate gene expression in intestinal epithelial cells in response to Bifidobacterium bifidum PRL2010, in particular genes involved in mucin pathways. Caco-2 cells were grown in transwell plates to 4 days post-confluence. Cells were then incubated for 2h and 4h with Bifidobacterium bifidum PRL2010. The experiment was performed in duplicate. Caco-2 RNA was extracted and hybridized to Affymetrix NuGO_Hs1a52018 arrays.
Project description:Identify candidate different expression genes in HT-29 cells after incubation with Bifidobacterium bifidum ATCC 29521. The results of microarray provide importment information for different genes expression in HT-29 cell after incubation withBifidobacterium bifidum ATCC 29521, up or down-regulated.
Project description:We studied the global transcription profiling of mouse upon colonization with Bifidobacterium bifidum PRL2010 by using DNA microarrays.
Project description:We studied the global transcription profiling of human cell lines upon colonization with Bifidobacterium bifidum PRL2010 by using DNA microarrays.
Project description:Dendritic cells (DC) play a pivotal regulatory role in activation of the innate as well as the adaptive part of the immune system by responding to environmental microorganisms. We have previously shown that some lactobacilli strains induce a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC. Contrary, bifidobacteria do not induce IL-12, but are able to inhibit the IL-12 production induced by lactobacilli. In the present study, genome wide microarrays were used to investigate the maturation and gene expression pattern murine bone marrow derived DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, multiple virus defence genes, and cytokine and chemokine genes related to both the adaptive and the innate immune response. Contrary, B. bifidum Z9 mostly up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the genes initiating the adaptive immune response induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and some Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a key regulator in cell signalling, was one of the few genes only induced by B. bifidum Z9. Blocking of the JNK1/2 pathway completely inhibited the gene expression of Ifn-β. We suggest that B. bifidum Z9 employs an active mechanism to inhibit induction of genes in DC triggering the adaptive immune system and that JPD2 is involved in the regulatory mechanism.
Project description:Gene expression in THP-1 cells on treatment with Lactobacillus acidophilus, Bacillus clausii and Bifidobacterium bifidum at MOI of 1 for 6 hours.