Project description:modENCODE_submission_720 This submission comes from a modENCODE project of David MacAlpine. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: Most terminally differentiated Drosophila tissues are either polyploid or polytene. Unlike normal chromosomes, where the entire chromosome must be replicated exactly once, polytene chromosomes are often differentially replicated with many regions underreplicated and some overreplicated. We will characterize five different polytene tissues using comparative genomic hybridization (CGH) to identify differentially replicated regions of each chromosome. These studies will also identify tissue specific amplicons, where the replication mediated amplification of specific loci is essential for up-regulation of mRNA levels encoding proteins critical for development. The differential replication of polytene chromosomes in Drosophila will provide a unique opportunity to understand how developmental cues and chromosomal domains influence replication initiation. Keywords: CGH For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:LSD1 (also known as KDM1A) is a histone demethylase and a key regulator of gene expression in embryonic stem cells and cancer.1,2 LSD1 was initially identified as a transcriptional repressor via its demethylation of active histone H3 marks (di-methyl lysine 4 [2MK4]).1 In prostate cancer, specifically, LSD1 also co-localizes with the AR and demethylates repressive 2MK9 histone marks from androgen-responsive AR target genes, facilitating androgen-mediated induction of AR-regulated gene expression and androgen-induced proliferation in androgen-dependent cancers. We report here that the LSD1 protein is universally upregulated in human CRPC and promotes survival of CRPC cell lines. This effect is explained in part by LSD1-induced activation of cell cycle and embryonic stem cell gene setsâgene sets enriched in transcriptomal studies of lethal human tumors. Importantly, despite the fact that many of these genes are direct LSD1 targets, we did not observe histone methylation changes at the LSD1-bound regions, demonstrating non-canonical histone demethylation-independent mechanisms of gene regulation. This ChIP-seq dataset included H3K4me2 and H3K9me2 ChIP-seq data for siRNA target against LSD1 and non-targeting control, as well as SP2509 inhibition of LSD1 and mock treatment 4 conditions: siRNA against LSD1, siRNA against luciferase (non-targeting control); SP2509 inhibition of LSD1, mock treatment. There are 2 replicates per condition.
Project description:In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products versus single gene products differentially impact the AM responses in males and females in response to OxS.
Project description:Cells from the Synechocystis sp. PCC6803 strain were used to identify phosphatidylglycerol-regulated proteins by label-free quantitative shotgun proteomics combining SDS-PAGE prefractionation and data-dependent LC–MS/MS. Acquired data was searched against a composite protein sequence database of cyanobacteria using the Mascot search algorithm. Protein identifications were accepted after rigorous validation criteria of Peptide Prophet, Protein Prophet and requiring at least two unique proteolytic peptides for each protein. Extracted peptide intensity features were used for the label-free comparison of differential protein expression in the mutant cyanobacteria cells.
Project description:This SuperSeries is composed of the following subset Series: GSE31246: Expression data from SP and non-SP sorted anti-EpCAM treated A2C12 cells GSE31313: Expression data from anti-EpCAM treated and untreated SP cells compared to lung tissue GSE31315: Expression data from SP and non-SP sorted anti-EpCAM treated A549 cells Refer to individual Series
Project description:LSD1 (also known as KDM1A) is a histone demethylase and a key regulator of gene expression in embryonic stem cells and cancer.1,2 LSD1 was initially identified as a transcriptional repressor via its demethylation of active histone H3 marks (di-methyl lysine 4 [2MK4]).1 In prostate cancer, specifically, LSD1 also co-localizes with the AR and demethylates repressive 2MK9 histone marks from androgen-responsive AR target genes, facilitating androgen-mediated induction of AR-regulated gene expression and androgen-induced proliferation in androgen-dependent cancers. We report here that the LSD1 protein is universally upregulated in human CRPC and promotes survival of CRPC cell lines. This effect is explained in part by LSD1-induced activation of cell cycle and embryonic stem cell gene sets—gene sets enriched in transcriptomal studies of lethal human tumors. Importantly, despite the fact that many of these genes are direct LSD1 targets, we did not observe histone methylation changes at the LSD1-bound regions, demonstrating non-canonical histone demethylation-independent mechanisms of gene regulation. This ChIP-seq dataset included H3K4me2 and H3K9me2 ChIP-seq data for siRNA target against LSD1 and non-targeting control, as well as SP2509 inhibition of LSD1 and mock treatment
Project description:In order to characterize the transcriptional regulator AcrA, comparative genome wide transcriptome analyses were conducted. Therefore, the wild type Actinoplanes sp. SE50/110 and the mutant ΔacrA were each cultivated in triplicates in minimal medium supplemented with maltose or glucose as single carbon source. RNA samples from the biological replicates were taken from the middle of the growth phase of both strains in each maltose and glucose minimal medium, respectively. RNA was isolated and the three replicates were combined for each strain and condition. For each cultivation condition, the data from two arrays (dye swap) were combined to make statistically reliable conclusions.
Project description:In order to characterize the transcriptional regulator MalT, comparative genome wide transcriptome analyses were conducted. Therefore, the wild type Actinoplanes sp. SE50/110 and the mutant ΔmalT were each cultivated in triplicates in minimal medium supplemented with maltose or glucose as single carbon source. RNA samples from the biological replicates were taken from the middle of the growth phase of both strains in each maltose and glucose minimal medium, respectively. RNA was isolated and the three replicates were combined for each strain and condition. For each cultivation condition, the data from two arrays (dye swap) were combined to make statistically reliable conclusions.