Project description:Bovine tuberculosis, caused by Mycobacterium bovis, is a disease of considerable economic importance yet comparatively little is known about the bovine immune response to the disease. Alveolar macrophages are one of the first cells to encounter mycobacteria following infection. In this experiment we investigated the early transcriptional response of bovine alveolar macrophages following infection with M. bovis. The transcriptional response to heat-killed M. bovis was also investigated to look for genes that are only differentially transcribed in response to the live organism.
Project description:Bovine tuberculosis, caused by Mycobacterium bovis, is a disease of considerable economic importance yet comparatively little is known about the bovine immune response to the disease. Alveolar macrophages are one of the first cells to encounter mycobacteria following infection. In this experiment we investigated the early transcriptional response of bovine alveolar macrophages following infection with M. bovis. The transcriptional response to heat-killed M. bovis was also investigated to look for genes that are only differentially transcribed in response to the live organism. Five-condition experiment, uninfected, live and heat-killed M. bovis-infected bovine alveolar macrophages from five cattle infected for two and four hours. Comparisons were within animal. Dye swaps were incorporated into the design.
Project description:We propose a custom pipeline for combining data from experiments on multispecies studies tested on data from human and bovine peripheral blood mononuclear cellssamples, stimulated with Mycobacterium tuberculosis.
Project description:Mycobacterium bovis (M. bovis) and Mycobacterium avium subspecies paratuberculosis (MAP) are important pathogens of cattle, causing bovine tuberculosis and Johne’s disease respectively. M. bovis and MAP infect residential macrophages in the lung and intestines respectively and subvert the macrophage biology to create a survival niche. To investigate this interaction we simultaneously studied the transcriptional response of bovine monocyte-derived macrophages to infection with two strains of M. bovis (AF2122/97 and G18) and two strains of MAP (C & L1).
Project description:①Background:Tuberculosis is mainly a respiratory tract infection caused by mycobacterium tuberculosis and one of the leading causes of death worldwide. According to the Global Tuberculosis Report in 2021, About a quarter of the world's population is infected with Mycobacterium tuberculosis and China is the second highest burden of TB. Although TB diagnosis and prevention techniques have become more mature, the number of TB cases is still increasing, mainly due to: the prevalence of drug-resistant tuberculosis bacteria, tuberculosis and HIV co-infection, long incubation time of mycobacterium tuberculosis difficult to early diagnosis and so on. Therefore, it is of great significance to study the pathogenesis of mycobacterium tuberculosis infection.②Method: THP-1 cells were treated with 50ng/ml PMA for 24 hours, so that THP-1 cell can be induced into macrophages. After that THP-1 macrophages were infected with mycobacterium tuberculosis H37Rv(MOI=1), which were collected and applied to RNA-sequencing. The constructed sequencing library was sequenced using an Illumina Novaseq 6000 system.
Project description:Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, a chronic granulomatous disease. Mtb is mostly restricted to humans and seldom causes disease in animals. M. bovis (Mbv) on the other hand causes tuberculosis in cows (bovine tuberculosis) and several wild animals. Each of these pathogens therefore has unique host adaptations and the host- and pathogen-specific factors driving this differential tropism still remain largely unknown. Here we profiled the secretomes of Mtb- and Mbv-infected bovine macrophages to characterise host-specific responses to each pathogen.
Project description:Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (M.tb) infection, remains a leading cause of morbidity and mortality world-wide. Circular RNAs are non-coding RNAs with diverse functions. However, most M.tb related circRNAs remain undiscovered. We used circRNA-seq technology to sequence the THP-1 cells infected with virulent and avirulent M.tb strains for 12 h.
Project description:Macrophages from cattles with different infectious status of bovine tuberculosis have different responses to in vitro Mycobacterium bovis challenge. This is confirmed in our previous study exploring several immune-related genes using qPCR. Microarrays can help us better understand the differences by screening thousands of genes.