Project description:BACKGROUND: The apparent rediscovery of the Ivory-billed Woodpecker Campephilus principalis in Arkansas, USA, previously feared extinct, was supported by video evidence of a single bird in flight (Fitzpatrick et al, Science 2005, 308:1460-1462). Plumage patterns and wingbeat frequency of the putative Ivory-billed Woodpecker were said to be incompatible with the only possible confusion species native to the area, the Pileated Woodpecker Dryocopus pileatus. RESULTS: New video analysis of Pileated Woodpeckers in escape flights comparable to that of the putative Ivory-billed Woodpecker filmed in Arkansas shows that Pileated Woodpeckers can display a wingbeat frequency equivalent to that of the Arkansas bird during escape flight. The critical frames from the Arkansas video that were used to identify the bird as an Ivory-billed Woodpecker are shown to be equally, or more, compatible with the Pileated Woodpecker. CONCLUSION: The identification of the bird filmed in Arkansas in April 2004 as an Ivory-billed Woodpecker is best regarded as unsafe. The similarities between the Arkansas bird and known Pileated Woodpeckers suggest that it was most likely a Pileated Woodpecker.
Project description:The DNA isolated from 44 either frozen or FFPE Neuroendocrine Neoplasm (NEN) was analysed by NGS, to identify genes more likely to be subject to sequence variations among 523 cancer-related ones.
Project description:Plasma DNA from 558 malignancies, 263 benign and borderline tumors and 367 healthy control samples were collected and subjected to random short-gun whole genome sequencing.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.