Project description:Transcriptional profiling of different mouse mammary cellular compartments (basal, luminal and stromal) under define hormone treatments: estrogen, progesterone, estrogen plus progesterone and the vehicle control. Goal was to determine the effect of ovarian hormones on mammary cellular compartment gene expression.
Project description:Transcriptional profiling of different mouse mammary cellular compartments (basal, luminal and stromal) under define hormone treatments: estrogen, progesterone, estrogen plus progesterone and the vehicle control. Goal was to determine the effect of ovarian hormones on mammary cellular compartment gene expression. Four-condition experiment within each cellular compartment. vehicle vs. estrogen, progesterone and estrogen plus progesterone. Biological replicates: 3 vehicle control, 4 estrogen treatment, 3 progesterone treatment, 4 estrogen plus progesterone treatment in each epithelial compartment (luminal, basal). 3 vehicle control, 3 estrogen, 3 progesterone, 3 estrogen plus progesterone in the stromal compartment.
Project description:Progesterone (P) acting through its cognate nuclear receptors (PRs) plays an essential role in driving pregnancy-associated branching morphogenesis of the mammary gland. However, the fundamental mechanisms, including global cistromic and acute genomic transcriptional responses that are required to elicit active branching morphogenesis in response to P, have not been elucidated. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to identify P-regulated genes that directly recruit PRs in the mouse mammary gland after acute P treatment. Two replicate PR ChIP samples and two replicate input DNA control samples from mouse mammary glands after mice are treated subcutaneously with 17?-Estradiol for 24 hours and then 17?-Estradiol plus Progesterone for 6 hours.
Project description:Estrogen receptor α (ERα) is the major driving transcription factor in normal mammary gland development as well as breast cancer initiation and progression.However,the fundamental mechanisms,including global cistromic and genomic transcriptional responses that are required to elicit mammary epithelial cell proliferation in response to ERα, have not been elucidated. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to identify estrogen regulated genes that directly recruit ERα in the WT mouse mammary gland
Project description:Estrogen Receptor is a key transcriptional regulator in mammary gland development and breast cancer. In this study, we have mapped the Estrogen Receptor chromatin binding patterns in healthy mouse mammary gland A minimum of 6 pairs of mouse mammary gland pads from mice at 5-6 weeks of age were excised and Estrogen Receptor ChIp-seq was performed.
Project description:Progesterone (P) acting through its cognate nuclear receptors (PRs) plays an essential role in driving pregnancy-associated branching morphogenesis of the mammary gland. However, the fundamental mechanisms, including global cistromic and acute genomic transcriptional responses that are required to elicit active branching morphogenesis in response to P, have not been elucidated. We used microarray analysis to identify global gene expression signatures that are acutely regulated by PRs in the mouse mammary gland after acute P treatment. Mammary gland gene expression data from 10-week-old ovariectomized wildtype and progesterone receptor null mice treated subcutaneously with 17β-Estradiol for 24 hours and then 17β-Estradiol plus Progesterone for 8 or 24 hours. Three replicate pools were tested with three mice per pool.
Project description:Estrogen Receptor is a key transcriptional regulator in mammary gland development and breast cancer. In this study, we have mapped the Estrogen Receptor chromatin binding patterns in healthy mouse mammary gland