Project description:We were interested in identifying targets of novel putative miRNAs we identified from small RNA sequencing libraries of Arabidopsis shoots. The small RNA (smRNA) sequencing libraries were made to identify changes in abundance of specific smRNAs in response to developmental transitions in Arabidopsis thaliana shoots, with special focus on vegetative phase change. We specifically wanted to separate the temporal changes in gene expression that result from vegetative phase change and those from flowering. Because of the close timing between the juvenile-to-adult and adult-to-reproductive developmental transitions in Arabidopsis grown under long day conditions, we used the late-flowering genotype FRI;FLC developed by the lab of Richard Amasino by introgressing the FRI allele from Sf-2 into the Col-0 genetic background, which is fri;FLC. For the early flowering genotype, we used FRI;flc-3, also developed by the Amasino lab by EMS-mutagenizing FRI;FLC, identifying early flowering mutants, and backcrossing multiple times to eliminate other EMS-induced mutations. The onset of vegetative phase change in FRI;FLC and FRI;flc-3 under our growth conditions was identical, but the progression was slower in FRI;FLC. By sequencing small RNAs from shoot apices at different time points and fully-expanded leaves at different positions on the shoot and comparing the results between the two genotypes, we were able to obtain a clear picture of changes in small RNA abundance in response to vegetative phase change and flowering in Arabidopsis. We then used the remaining RNA to make genome-wide mapping of uncapped and cleaved transcripts (GMUCT) 2.0 libraries of a subset of our samples. GMUCT 2.0 allows you to identify RNAs that are 1) uncapped and in the process of 5’->3’ exonuclease degradation and 2) miRNA and siRNA-mediated cleavage products. We wanted to use these GMUCT 2.0 libraries to identify targets of novel putative miRNAs discovered by our smRNA sequencing, thereby supporting the idea that these novel putative miRNAs are in fact functional.
Project description:We were interested in changes in small RNA abundance changes in response to developmental transitions in Arabidopsis thaliana shoots, with special focus on vegetative phase change. We specifically wanted to separate the temporal changes in gene expression that result from vegetative phase change and those from flowering. Because of the close timing between the juvenile-to-adult and adult-to-reproductive developmental transitions in Arabidopsis grown under long day conditions, we used the late-flowering genotype FRI;FLC developed by the lab of Richard Amasino by introgressing the FRI allele from Sf-2 into the Col-0 genetic background, which is fri;FLC. For the early flowering genotype, we used FRI;flc-3, also developed by the Amasino lab by EMS-mutagenizing FRI;FLC, identifying early flowering mutants, and backcrossing multiple times to eliminate other EMS-induced mutations. The onset of vegetative phase change in FRI;FLC and FRI;flc-3 under our growth conditions was identical, but the progression was slower in FRI;FLC. By sequencing small RNAs from shoot apices at different time points and fully-expanded leaves at different positions on the shoot and comparing the results between the two genotypes, we were able to obtain a clear picture of changes in small RNA abundance in response to vegetative phase change and flowering in Arabidopsis. For the small RNA samples, we performed two replicates using two different indices in the 5'-adapter and ran each replicate pair on the same sequencing lane. For the cotyledon and leaf samples we only performed one replicate using the same index for all samples because we obtained significantly different results with the two adapters used for the shoot apices, preventing us from using them as true replicates.
Project description:By 4C-seq protocol we investigated DNA contacts across the genome by the FLC gene in the model plant Arabidopsis thaliana in order to explore a potential role of long-distance chromosomal interactions in the regulation of flowering.
Project description:We report that H3.3 stimulates the expression of FLC and its homologs, and promotes the active histone modifications at their loci. FRI directly interacts with the H3.3 chaperone HIRA and elevates H3.3 deposition towards the FLC 3’ region. The enriched H3.3 facilitates FLC 3’ end interaction with the 5’ end, promoting active histone modifications around the transcription start site (TSS) of FLC. In contrast, though coordinately activate FLC expression; H3.3 and H2A.Z antagonize each other at the FLC chromatin. In addition to FLC and its homologs, H3.3 is required for H3K4me3 at a subset of especially short genes. Our findings reveal the important function of H3.3 in the regulation of the active chromatin state, which enhances FLC transcription and floral repression
Project description:Polyploidy is a widespread phenomenon in flowering plant species. Polyploid plants frequently exhibit considerable transcriptomic alterations after whole-genome duplication (WGD). It is known that the transcriptomic response to tetraploidization is ecotype-dependent in Arabidopsis. Nevertheless, the biological significance and the underlying mechanism are unknown. Here, we showed that 4x Col-0 and 4x Ler presented different flowering times, with a delayed flowering time in 4x Col-0 but not in 4x Ler. We found that the expression of FLOWERING LOCUS C (FLC), the major repressor of flowering, was significantly increased in 4x Col-0 but subtle change in 4x Ler. Moreover, the level of a repressive epigenetic mark, trimethylation of histone H3 at lysine 27 (H3K27me3), was significantly decreased in 4x Col-0 but not in 4x Ler, potentially leading to different transcription levels of FLC and flowering time in 4x Col-0 and 4x Ler. Apart from the FLC locus, hundreds of genes showed differentially H3K27me3 alterations in 4x Col-0 and 4x Ler. Comparably, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and transcription factors required for H3K27me3 deposition presented differential transcriptional changes between 4x Col and Ler, potentially account for differential H3K27me3 alterations in 4x Col-0 and Ler. Last, we found that the natural 4x Arabidopsis ecotype Wa-1 presented early flowering time, associated with low expression and high H3K27me3 of FLC. Taken together, our results showed a role of H3K27me3 alterations in response to genome duplication in Arabidopsis autopolyploids and that flowering time variation potentially functions in autopolyploid speciation.