Project description:The yellow-throated marten (Martes flavigula) is a medium-sized carnivore that is widely distributed across much of Asia and occupies an extensive variety of habitats. We reported a high-quality genome assembly of this organism that was generated using Oxford Nanopore and Hi-C technologies. The final genome sequences contained 215 contigs with a total size of 2,449.15 Mb and a contig N50 length of 68.60 Mb. Using Hi-C analysis, 2,419.20 Mb (98.78%) of the assembled sequences were anchored onto 21 linkage groups. Merqury evaluation suggested that the genome was 94.95% complete with a QV value of 43.75. Additionally, the genome was found to comprise approximately 39.74% repeat sequences, of which long interspersed elements (LINE) that accounted for 26.13% of the entire genome, were the most abundant. Of the 20,464 protein-coding genes, prediction and functional annotation was successfully performed for 20,322 (99.31%) genes. The high-quality, chromosome-level genome of the marten reported in this study will serve as a reference for future studies on genetic diversity, evolution, and conservation biology.
Project description:The DNA isolated from 44 either frozen or FFPE Neuroendocrine Neoplasm (NEN) was analysed by NGS, to identify genes more likely to be subject to sequence variations among 523 cancer-related ones.
Project description:Plasma DNA from 558 malignancies, 263 benign and borderline tumors and 367 healthy control samples were collected and subjected to random short-gun whole genome sequencing.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:Chronic myeloid leukemia (CML) epitomizes successful targeted therapy, with 86% of patients in the chronic phase treated with tyrosine kinase inhibitors (TKIs) attaining remission. However, resistance to TKIs occurs during treatment, and patients with resistance to TKIs progress to the acute phase called Blast Crisis (BC), wherein the survival is restricted to 7-11 months. About 80 % of patients in BC are unresponsive to TKIs. This issue can be addressed by identifying a molecular signature which can predict resistance in CML-CP prior to treatment as well as by delineating the molecular mechanism underlying resistance. Herein, we report genomic analysis of CML patients and imatinib-resistant K562 cell line to achieve the same. WGS was performed on imatinib-sensitive and -resistant K562 cells. Library preparation was done by 30x WGS KAPA PCR-Free v2.1 kit, and Illumina HiSeq X sequencer was used for 2 x 150 bp paired-end sequencing. Our study identified accumulation of aberrations on chromosomes 1, 3, 7, 16 and 22 as predictive of occurrence of resistance. Further, recurrent amplification in chromosomal region 8q11.2-12.1 was detected in highly resistant K562 cells as well as CML patients. The genes present in this region were analyzed to understand molecular mechanism of imatinib resistance.