Project description:Purpose: The primary goal of this study was to identify gene-expression profiles of anaplastic thyroid cancer and to identify some novel in-frame gene fusions that could result in translated protein products affecting the development of anaplastic thyroid cancer. Methods: RNAseq Data was processed with TCGA UNC V2 RNAseq protocol and different expressed genes were identify by using DESeq2, limma-voom, and edgeR. Potential fusion genes were identified by using SOAPfuse, Chimerascan and TopHat-Fusion. Potential fusion genes were confirmed by cDNA PCR and Sanger sequencing. Results: A total of 21 fusion genes were detected, including six predicted in-frame fusions; none were recurrent. Global gene expression analysis showed 661 genes to be differentially expressed between anaplastic thyroid cancer and papillary thyroid cancer cell lines, with pathway enrichment analyses showing downregulation of TP53-signaling as well as cell adhesion molecules in anaplastic thyroid cancer . Conclusions: Our study represents the first detailed analysis of anaplastic thyroid cancer cell lines and found several novel in-frame gene fusions that could result in translated protein products affecting the development of anaplastic thyroid cancer. These data provide novel insights into the tumorigenesis of anaplastic thyroid cancer and may be used to identify new therapeutic targets.
Project description:A metabolic hallmark of cancer identified by Warburg is the increased consumption of glucose and secretion of lactate, even in the presence of oxygen. Although many tumors exhibit increased glycolytic activity, most forms of cancer rely on mitochondrial respiration for tumor growth. We report here that Hürthle cell carcinoma of the thyroid (HTC) models harboring mitochondrial DNA-encoded defects in complex I of the mitochondrial electron transport chain exhibit impaired respiration and alterations in glucose metabolism. CRISPR-Cas9 pooled screening identified glycolytic enzymes as selectively essential in complex I-mutant HTC cells. We demonstrate in cultured cells and a PDX model that small molecule inhibitors of lactate dehydrogenase selectively induce an ATP crisis and cell death in HTC. This work demonstrates that complex I loss exposes fermentation as a therapeutic target in HTC and has implications for other tumors bearing mutations that irreversibly damage mitochondrial respiration.
Project description:Anaplastic thyroid carcinoma (ATC) is a rare but deadly thyroid cancer. In contrast, papillary thyroid carcinoma (PTC) is common and highly curable. Minimally invasive biomarkers are needed to distinguish ATC and PTC. Here, by small RNA-seq we show the differential expression levels of several miRNAs, which include miR-34a and miR-210 in ATC compared to PTC cell lines.
Project description:3 papillary thyroid cancer cell lines were compared, treated with Y15 to untreated. 1 million cells of each papillary thyroid cell line (TPC1, K1, BCPAP) were plated, treated 24 hours later with 10uM Y15, and collected 24 hours later by trypsinization.
Project description:Currently there is a lack of effective therapies which result in long-term durable response for patients presenting with anaplastic thyroid carcinoma (ATC), a very rare and lethal variant of thyroid cancer. ATC is resistant to chemotherapy, radiation, and targeted therapies currently available. In an effort to identify novel tumor-specific therapeutic targets, we performed high throughput gene array analysis screening numerous ATC cell lines, and compared their gene expression levels to normal thyroid cell lines.