Project description:Alternative splicing (AS) influences the expression of human genes in diverse ways. We previously used subcellular fraction-sequencing (Frac-Seq) to reveal an unexpected connection between alternative splicing and isoform-specific mRNA translation. Here we apply comparative transcriptomics to explore alternative splicing coupled translational control (AS-TC) across 13 million years of primate evolution. We used Frac-seq to identify polyribosome associated mRNA isoforms from human, chimpanzee and orangutan induced pluripotent stem cell lines. We discovered orthologous AS-TC events with either conserved or species-specific translation patterns. Exons sequences associated with similar sedimentation profiles between species show strong sequence conservation compared to orthologous exons with divergent sedimentation profiles, suggesting exonic cis-regulatory elements influence to translational control. To test this hypothesis we created luciferase reporters from orthologous exons with divergent sedimentation profiles differing by a single nucleotide. Remarkably, single nucleotide substitutions were sufficient to drive species-specific expression of luciferase reporters. Together these data establish that cis-acting elements regulate AS-TC across primate species.
Project description:To identify evolutionarily conserved Beta-catenin protein interactions, Beta-catenin mRNA from various metazoans was injected into Xenopus embryos and immunopurified at gastrula stage. Beta-catenin complexes were then separated on an SDS-PAGE gel and subjected mass spectrometric analysis
Project description:Background: Alternative splicing (AS), which generates multiple mRNA isoforms from single genes, is crucial for the regulation of eukaryotic gene expression. The flux through competing AS pathways cannot be determined by traditional RNA-Seq, however, because different mRNA isoforms can have widely differing decay rates. Indeed, some mRNA isoforms with extremely short half-lives, such as those subject to translation-dependent nonsense-mediated decay (AS-NMD), may be completely overlooked in even the most extensive RNA-Seq analyses. Results: RNA immunoprecipitation in tandem (RIPiT) of exon junction complex (EJC) components allows for purification of post-splicing mRNA-protein particles (mRNPs) not yet subject to translation (pre-translational mRNPs) and, therefore, translation-dependent mRNA decay. Here we compared EJC RIPiT-Seq to whole cell RNA-Seq data from HEK293 cells. Consistent with expectation, the flux through known AS-NMD pathways is substantially higher than that captured by RNA-Seq. Our EJC RIPiT-Seq also definitively demonstrates that the splicing machinery itself has no ability to detect reading frame. We identified thousands of previously unannotated splicing events; while many can be attributed to “splicing noise”, others are evolutionarily-conserved events that produce new AS-NMD isoforms likely involved in maintenance of protein homeostasis. Several of these occur in genes whose overexpression has been linked to poor cancer prognosis. Conclusions: Deep sequencing of RNAs in post-splicing, pre-translational mRNPs provides a means to identify and quantify splicing events without the confounding influence of differential mRNA decay. For many known AS-NMD targets, the NMD-linked AS pathway predominates. EJC RIPiT-Seq also enabled identification of numerous conserved but previously unknown AS-NMD events.
Project description:Differences in gene regulation between human and closely related species influence phenotypes that are distinctly human. While gene regulation is a multi-step process, the majority of research concerning divergence in gene regulation among primates has focused on transcription. To gain a comprehensive view of gene regulation, we surveyed genome-wide ribosome occupancy, which reflects levels of protein translation, in lymphoblastoid cell lines derived from human, chimpanzee and rhesus macaque. We further integrated mRNA and protein level measurements collected from matching cell lines. We find that, in addition to transcriptional regulation, the major factor determining protein level divergence between human and closely related species is post-translational buffering. Inter-species divergence in transcription is generally propagated to the level of protein translation. In contrast, gene expression divergence is often attenuated post-translationally, potentially mediated through post-translational modifications. Results from our analysis indicate that post-translational buffering is a conserved mechanism that led to relaxation of selective constraint on transcript levels in humans.