Project description:Freezing causes physiological changes even in a hardy, cold-acclimated wild type. During recovery from freezing, gene expression will reflect the induction of damage-repair processes distinct from the damage-prevention associated with cold acclimation. This will be detected by observing the wild-type transcriptome at two time points during recovery from a freezing episode. The appropriate control is the unfrozen, cold-acclimated wild type. Experimenter name = Glenn Thorlby; Experimenter phone = 01874 443770; Experimenter address = School of biological Sciences; Experimenter address = Bourne Building; Experimenter address = Royal Holloway; Experimenter address = Egham; Experimenter zip/postal_code = TW20 0EX Experiment Overall Design: 3 samples were used in this experiment
Project description:During cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3°C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation. We used whole genome microarrays to monitor changes in gene expression in the Arabidopsis thaliana accessions Columbia-0, Rschew and Tenela during three days of acclimation to sub-zero temperature at -3°C after cold acclimation
Project description:Freezing causes physiological changes even in a hardy, cold-acclimated wild type. During recovery from freezing, gene expression will reflect the induction of damage-repair processes distinct from the damage-prevention associated with cold acclimation. This will be detected by observing the wild-type transcriptome at two time points during recovery from a freezing episode. The appropriate control is the unfrozen, cold-acclimated wild type. Experimenter name = Glenn Thorlby Experimenter phone = 01874 443770 Experimenter address = School of biological Sciences Experimenter address = Bourne Building Experimenter address = Royal Holloway Experimenter address = Egham Experimenter zip/postal_code = TW20 0EX Keywords: growth_condition_design;
Project description:During low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. During deacclimation in response to warm temperatures cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation. Here, we report metabolic (GC-MS) and transcriptional (microarrays, qRT-PCR) responses underlying deacclimation during the first 24 h after a shift of cold acclimated Arabidopsis thaliana (Columbia-0) plants to warm temperature. The data revealed a faster response of the transcriptome than of the metabolome and provided evidence for tightly regulated temporal responses at both levels. Metabolically deacclimation is associated with decreasing contents of sugars, amino acids and glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production associated with growth resumption under warm temperature conditions. Deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Altered hormonal regulation appears particularly important during deacclimation, with changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolisms. Several transcription factor families controlling fundamental aspects of plant development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are interrelated processes that are transcriptionally highly interrelated. Expression patterns of some clock oscillator components during deacclimation resembled those under warm conditions, indicating at least partial re-activation of the circadian clock. This study provide the first comprehensive analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underly the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a reference dataset of genes, metabolites and pathways that are crucial during the first rapid phase of deacclimation and will be useful for the further analysis of this important but under-researched plant process. We used whole genome microarrays to monitor changes in gene expression in the Arabidopsis thaliana accession Columbia-0 during the first 24 h after a shift of cold acclimated plants to warm temperature.