Project description:To investigate the protective effect of Lycium barbarum polysaccharide-glycoprotein (LBP) in the radiation-induced HaCaT cell injury, We performed gene expression profiling analysis using data obtained from RNA-seq of HaCaT cells at 3h after radiation.
Project description:Lycium barbarum, a member of the Solanaceae family, has been used for more than 2000 years in the traditional Chinese medicine. L. ruthenicum, endemic to northwestern China, is also used as medicine and has had a great influence on the development of Minority Medicine. Previous studies revealed there are many differences between two species, including morphological and phytochemical differences. However, the molecular mechanism of formation of its fruit and associated medicinal and nutritional components is unexplored. In the present studies, for transcriptomic analyses, fruits from 5 developmental stages L. barbarum and L. ruthenicum were collected. KEGG analyses for the DEGs between L. barbarum and L. ruthenicum, revealed that molecular mechanism of fruit formation were distinct obviously during the development process. Moreover, we found that multiple DEGs enriched in “Phenylpropanoid biosynthesis (ID: ko00940”, “Flavonoid biosynthesis” (ID: ko00941) were up-regulated in L. ruthenicum at different developmental stages of fruit. It suggested that biotic and abiotic stress might be responsible for high abundance of antioxidant capacities in L. ruthenicum.