Project description:To identify microRNAs impacting estrogen receptor ERα expression in breast cancer, we have screened ER-positive breast cancer cells with a library of pre-miRs, and systematically monitored the ERα expression by protein lysate microarrays. There was a significant enrichment of the in silico predicted ERα targeting microRNAs among the hits. The most potent pre-miRs miR-18a/b, miR-193b, miR-206, and miR-302c, were confirmed to directly target ERα and to repress estrogen-responsive genes. The effect of miRNA overexpression on gene expression profile of MCF-7 cells was studied. Furthermore, miR-18a and miR-18b showed increased expression in ERα-negative as compared to ERα-positive clinical tumors. In summary, we present systematic and direct functional and correlative clinical evidence on microRNAs inhibiting ERα signaling in breast cancer. MCF-7 cells (300 000 per well on 6-well plates) were transfected with an siRNA for ERα or with Ambion pre-miR� constructs for miR-18a, miR-193b, miR-206, miR-302c, or pre-miR negative control #1 (scrambled pre-miR) at 20 nM, and incubated for 24h.
Project description:To identify microRNAs impacting estrogen receptor ERα expression in breast cancer, we have screened ER-positive breast cancer cells with a library of pre-miRs, and systematically monitored the ERα expression by protein lysate microarrays. There was a significant enrichment of the in silico predicted ERα targeting microRNAs among the hits. The most potent pre-miRs miR-18a/b, miR-193b, miR-206, and miR-302c, were confirmed to directly target ERα and to repress estrogen-responsive genes. The effect of miRNA overexpression on gene expression profile of MCF-7 cells was studied. Furthermore, miR-18a and miR-18b showed increased expression in ERα-negative as compared to ERα-positive clinical tumors. In summary, we present systematic and direct functional and correlative clinical evidence on microRNAs inhibiting ERα signaling in breast cancer.
Project description:Cultured breast cancer cells in standard media are highly glycolytic To determine the effect of glycolysis on gene expression in MCF-7 we adapted cells to cuture in mediae containing 10 mM fructose, and compared the gene expression to cells cutured in standard high glucose (25 mM) DMEM
Project description:MCF-7 is an estrogen receptor-positive breast cancer cell line. This experiment is designed to study (1) the effect of estradiol (E2) exposure and (2) lysine methyltransferase 2B (KMT2B) knockdown in MCF-7 cells. Cells were grown for 72 hours prior to treatment with vehicle or 10 nM E2 for 4 and 24 hours. Additionally, to assess the effect of KMT2B knockdown, MCF-7 cells were transfected with KMT2B targeting siRNA or scrambled control siRNA in the absence or presence of E2. RNA were isolated using Trizol and hybridized to Affymetrix GeneChip Human Genome U133 Plus 2.0 array.
Project description:Analysis of MCF-7 cells following miR-9 stable overexpression or not. MiR-9 regulates various mRNA expression in MCF-7 cells.Results provide insight into the role of miR-9-involved mechanisms underlying miR-9-mediated effects on breast cancer stemness.