Project description:Previous studies have evaluated pork quality by omics methods. However, proteomics coupled with metabolomics to investigate pork freshness by using pork exudates has not been reported. This study determined the changes in profiles of peptides and metabolites in exudates from pork stored at different temperatures (25, 10, 4, and -2 ℃). Multivariate statistical analysis revealed similar changes in profiles in exudates collected from pork stored at -2 and 4 ℃, and additional changes following storage at higher temperatures. We identified peptides from 7 proteins and 30 metabolites differing in abundance between fresh and spoiled pork. Significant correlations be-tween pork quality and most of the peptides from these 7 proteins and 30 metabolites were found. The present study provides insight into changes in peptide and metabolite profiles of exudates from pork during storage at different temperatures and our analysis suggest that such changes can be used as markers for pork spoilage.
Project description:This study applied peptidomics to investigate potential biomarkers for evaluating pork-meat freshness. Meat samples stored at -2, 4, 10, and 25 °C were collected at specific time points to evaluate meat freshness indicators (color, total viable count, pH, and total volatile basic nitrogen). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) profile was analyzed, and substantial protein degradation (myosin heavy chain, paramyosin, troponin) was detected at the end of storage, regardless of the temperature. Peptidomics analysis was performed using a UHPLC-LTQ-Orbitrap mass spectrometer, and the potential peptide marker MVHMASKE was filtered via multivariate analysis and quantified by parallel reaction monitoring combined with external standard quantitation. In addition, the relationship between peptide content and change in meat freshness was verified using real-life samples and the content of MVHMASKE showed an obvious decline during storage, presenting a period of pork meat from fresh to spoilage. This study provides favorable evidences to evaluate pork meat freshness by mass spectrometry-based pep-tidomics.
2022-05-20 | PXD031995 | Pride
Project description:Temporal Dynamics of Fresh Pork Microbial Ecology Across Meat, Contact Surfaces, and Fabrication Lines in a Pork Processing Facility
| PRJNA1178689 | ENA
Project description:microbial community under applied electric field
| PRJNA552178 | ENA
Project description:Microbial diversity on fresh-cut lettuce
| PRJNA820484 | ENA
Project description:Microbiome Characterization of Two Fresh Pork Cuts During Production in a Pork Fabrication Facility
| PRJNA1156799 | ENA
Project description:Bacterial diversity of chilled pork