Project description:To unravel molecular targets involved in glycopeptide resistance, three isogenic strains of Staphylococcus aureus with different susceptibility levels to vancomycin or teicoplanin were subjected to whole-genome microarray-based transcription and quantitative proteomic profiling. Quantitative proteomics performed on membrane extracts showed exquisite inter-experimental reproducibility permitting the identification and relative quantification of >30% of the predicted S. aureus proteome. In the absence of antibiotic selection pressure, comparison of stable resistant and susceptible strains revealed 94 differentially expressed genes and 178 proteins. As expected, only partial correlation was obtained between transcriptomic and proteomic results during stationary-phase. Application of massively parallel methods identified one third of the complete proteome, a majority of which was only predicted based on genome sequencing, but never identified to date. Several over‑expressed genes represent previously reported targets, while series of genes and proteins possibly involved in the glycopeptide resistance mechanism were discovered here, including regulators, global regulator attenuator, hyper‑mutability factor or hypothetical proteins. Gene expression of these markers was confirmed in a collection of genetically unrelated strains showing altered susceptibility to glycopeptides. Our proteome and transcriptome analyses have been performed during stationary‑phase of growth on isogenic strains showing susceptibility or intermediate level of resistance against glycopeptides. Altered susceptibility had emerged spontaneously after infection with a sensitive parental strain, thus not selected in vitro. This combined analysis allows the identification of hundreds of proteins considered, so far as hypothetical protein. In addition, this study provides not only a global picture of transcription and expression adaptations during a complex antibiotic resistance mechanism but also unravels potential drug targets or markers that are constitutively expressed by resistant strains regardless of their genetic background, amenable to be used as diagnostic targets. Keywords: Molecular markers, antibiotic resistance, glycopeptides, growth-phase
Project description:Staphylococcus aureus is one of the most important pathogens in humans and animals, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Rhein, a natural plant product, has potential antimicrobial activity against Staphylococcus aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with rhein. Results provided insight into mechanisms involved in rhein - Staphylococcus aureus interactions. Keywords: rhein response
Project description:S. aureus and S. epidermidis were challenged with D-sphingosine, an antimicrobial lipid similar to sphingosines found in the major staphylococcal niche- human skin. Comparison of responses was used to identify resistance mechanisms and likely mode of action
Project description:Pseudomonas aeruginosa and Staphylococcus aureus are often co-isolated in persistent infections. The goal of this study was to determine how secreted products from S. aureus affect gene expression in P. aeruginosa. Therefore, media control or S. aureus supernatant was added to P. aeruginosa cultures at 25% total volume and gene expression was measured at 20 min, 1 h, and 2 h using RNA-seq. Overall, after addition of S. aureus supernatant, there was an upregulation in genes involved in metal deprivation and intermediate metabolite uptake.
Project description:In the present study, we employed Affymetrix Staphylococcus aureus GeneChip arrays to investigate the dynamics of global gene expression profiles during the cellular response of Staphylococcus aureus to peracetic acid, which involved initial growth inhibition and subsequent partial recovery. Keywords: Time course
Project description:The transcription level of a rex-deficient S. aureus mutant in comparison to its parental strain S. aureus SH1000 was analyzed using DNA microarrays.
Project description:In the present study we analyzed the response of S. aureus to mupirocin, the drug of choice for nasal decolonization of S. aureus. Mupirocin selectively inhibits the bacterial isoleucyl-tRNA synthetase (IleRSs) leading to the accumulation of uncharged isoleucyl-tRNA and hence (p)ppGpp. The latter is a signal for the induction of the stringent response, an important global transcriptional and translational control mechanism that allows bacteria to adapt to nutritional deprivation. To identify proteins with an altered synthesis pattern in response to mupirocin treatment we used the highly sensitive 2-dimensional gel electrophoresis technique in combination with mass spectrometry. Obtained results were complemented by DNA-microarray, Northern blot and metabolome analysis. Whereas expression of genes involved in nucleotide biosynthesis, DNA metabolism, energy metabolism and translation was significantly down-regulated, expression of the isoleucyl-tRNA synthetase, the branched chain amino acids pathway, genes with functions in oxidative stress resistance (ahpC, katA), putative roles in stress protection (SACOL1759, SACOL2131, SACOL0815) and transport processes was increased. Of particular interest were the differences in the transcription of genes encoding virulence associated regulators (i.e. arlRS, saeRS, sarA, sarR, sarS) as well as genes directly involved in the virulence of S. aureus (i.e. fnbA, epiE, epiG, seb). In the present study we analyzed the response of S. aureus to mupirocin, the drug of choice for nasal decolonization of S. aureus. Mupirocin selectively inhibits the bacterial isoleucyl-tRNA synthetase (IleRSs) leading to the accumulation of uncharged isoleucyl-tRNA and hence (p)ppGpp. The latter is a signal for the induction of the stringent response, an important global transcriptional and translational control mechanism that allows bacteria to adapt to nutritional deprivation.
Project description:S. aureus ATCC 25923 is performance standard for antimicrobial susceptibility testing. S. aureus ATCC 33591 showed resistance against erytrhromycin, penicillin, and streptomycin. We used microarray to compare RNA expression between sensitive and resistant strain of S. aureus as a preliminary research for MRSA inhibition.
Project description:A promising alternative to antibiotics for treatment of Staphylococcus aureus infections is photodynamic inactivation (PDI), which employs a photosensitizer (PS) that produces cytotoxic reactive oxygen species (ROS) when exposed to molecular oxygen and antimicrobial blue light in the spectrum of 400-470 nm. Although the precise mechanistic basis of PDI has not been defined, the formation of ROS and free radicals that oxidize a number of cellular targets, including membrane lipids, damage to proteins and nucleic acids result in inactivation of essential cellular functions and subsequent cell death. Because PDI is non-selective and affects multiple cellular targets, development of resistance or tolerance to PDI has been considered to be unlikely and attempts to induce S. aureus resistance or tolerance upon repeated sub-lethal doses of PDI have not succeeded. However, multiple aspects of PDI suggest that development of tolerance is highly probable, in particular when PDI is used for treatment of infections where the environment at the infection site prevents penetration of PDI at a level sufficient to cause death of all bacteria and with tolerant phenotypes emerging from the surviving bacteria. In this study, we sought to identify the mechanisms that contribute to PDI tolerance in S. aureus. S. aureus HG003 and the isogenic HG003DmutSL strain with defects in DNA mismatch repair were used to evaluate the response of S. aureus and the roles of DNA mismatch repair and gene regulatory networks to repeated sublethal doses of PDI. Global transcriptome and genome analyses were used in an agnostic approach to identify the underlying transcriptional responses and genetic adaptations that occur as a result of repeated PDI and contribute to PDI tolerance. Our results reveal multiple metabolic, transport and cell wall biogenesis pathways that contribute to PDI tolerance, and a S. aureus regulatory gene likely responsible for the adaptive transcriptional response to PDI.