Project description:Primary tumor recurrence occurs commonly after surgical resection of lung squamous cell carcinoma (SCC). The aim of this study was to identify genes involved in recurrence in lung squamous cell carcinoma patients. Array comparative genomic hybridization (aCGH) was performed on DNA extracted from tumour tissue from 62 patients with primary lung squamous cell carcinomas. aCGH data was analysed to identify genes affected by copy number alterations that may be involved in SCC recurrence. Candidate genes were then selected for technical validation based on differential copy number between recurrence and non-recurrence SCC tumour samples. Genes technically validated advanced to tests of biological replication by qPCR using an independent test set of 72 primary lung SCC tumour samples. 18q22.3 loss was identified by aCGH as significantly associated with recurrence (p=0.038). Although aCGH copy number loss associated with recurrence was found for seven genes within 18q22.3, only SOCS6 copy number loss was both technically replicated by qPCR and biologically validated in the test set. DNA copy number profiling using 44K element array comparative genomic hybridization microarrays of 62 primary lung squamous cell carcinomas.
Project description:Primary tumor recurrence occurs commonly after surgical resection of lung squamous cell carcinoma (SCC). The aim of this study was to identify genes involved in recurrence in lung squamous cell carcinoma patients. Array comparative genomic hybridization (aCGH) was performed on DNA extracted from tumour tissue from 62 patients with primary lung squamous cell carcinomas. aCGH data was analysed to identify genes affected by copy number alterations that may be involved in SCC recurrence. Candidate genes were then selected for technical validation based on differential copy number between recurrence and non-recurrence SCC tumour samples. Genes technically validated advanced to tests of biological replication by qPCR using an independent test set of 72 primary lung SCC tumour samples. 18q22.3 loss was identified by aCGH as significantly associated with recurrence (p=0.038). Although aCGH copy number loss associated with recurrence was found for seven genes within 18q22.3, only SOCS6 copy number loss was both technically replicated by qPCR and biologically validated in the test set.
Project description:Investigation of whole genome gene expression level changes in Homo sapiens Esophageal squamous cell carcinoma cells KYSE30 after knock down of MTA2 gene expression
Project description:Lung cancer is the leading cause of preventable death globally and is broadly classified into adenocarcinoma and squamous cell carcinoma depending upon cell type. In this study, we carried out mass spectrometry based quantitative proteomic analysis of lung adenocarcinoma and squamous cell carcinoma primary tissue by employing the isobaric tags for relative and absolute quantitation (iTRAQ) approach. Proteomic data was analyzed using SEQUEST search algorithm which resulted in identification of 25,998 peptides corresponding to 4,342 proteins of which 610 proteins were differentially expressed (≥ 2-fold) between adenocarcinoma and squamous cell carcinoma samples. These differentially expressed proteins were further classified by gene ontology for their localizations and biological processes. Pathway analysis of differentially expressed proteins revealed distinct alterations in networks and pathways in both adenocarcinoma and squamous cell carcinoma samples. In this study, we identified a subset of proteins that shows converse expression between lung adenocarcinoma and squamous cell carcinoma samples. Such proteins may serve as signature markers to distinguish between the two subtypes.