Project description:Dinoflagellate blooms are natural phenomena that have drawn global attention due to their huge negative impacts on marine ecosystems, mariculture and human health. Although the understanding of dinoflagellate blooms has been significantly improved over the past half century, little is known about the underlying mechanisms sustaining the high biomass growth rate during the bloom period which is paradoxically characterized by low dissolved CO2 and inorganic nutrients. Here, we compared the metaproteomes of non-bloom, mid-bloom and late-bloom cells of a marine dinoflagellate Prorocentrum donghaiense in the coastal East China Sea, to understand the underlying mechanisms sustaining high biomass growth rate under the typically low CO2 and inorganic nutrient conditions.
2021-01-21 | PXD018006 | Pride
Project description:Prorocentrum lima transcriptome sequencing
Project description:This project aimed to disclose the metabolic alterations and responses of the marine mussel Mytilus galloprovincialis after grazing the toxic microalga Prorocentrum lima. Mussels metabolic alterations were investigated by shotgun proteomics, during the phases of intoxication and depuration. The diarrhetic shelllfisf toxins were also quantified in this project, for assessing the levels of contamination of mussels.
Project description:Differential expression analysis of digestive gland and gill tissues of mussels (Mytilus galloprovincialis) exposed to dinoflagellates (Prorocentrum lima), producers of okadaic acid, at a concentration of 200 cells/ml for one day. Each sample consists in total RNA was extracted from pooled tissues of 5 individuals.
Project description:Our paper presents the results of a study in which we used Illumina RNA-Seq (i.e. transcriptomics) and high-CO2 nutrient limitation experiments to examine transcriptional variation of iron-limited, phosphorus-limited, and iron-phosphorus co-limited cultures following long-term (~7 years) low- (380 µatm CO2) and high-CO2 (750 µatm CO2) selection. Hence, we describe the molecular physiology of the globally-significant, biogeochemically-critical marine cyanobacterium Trichodesmium.
2017-10-23 | GSE94951 | GEO
Project description:Transcriptomic analysis reveals molecular response to changing ambient phosphorus in a marine dinoflagellate Prorocentrum donghaiense
Project description:Differential expression analysis of digestive gland and gill tissues of mussels (Mytilus galloprovincialis) exposed to dinoflagellates (Prorocentrum lima), producers of okadaic acid, at a concentration of 200 cells/ml for one day. Each sample consists in total RNA was extracted from pooled tissues of 5 individuals. Two-color dye-swap direct comparison experiment: exposed vs non-exposed (treated vs control). Biological replicates: two treated replicates and two control replicates per tissue.