Project description:Six sequencing libraries was prepared from S. Typhi planktonic cells and biofilm cells using Illumina HiSeq 2500 sequencing to investigate differential gene expression between the two conditions. The transcriptome was processed using Cufflinks and there were a total of 35 up-regulated genes and 29 down-regulated genes log2-fold change values of greater than 2 and less than negative 2. The differentially expressed genes were identified using BLAST and the functions was analysed. This study provides an overview of the genes that are differentially expressed in S. Typhi when it transitions from the planktonic to the biofilm phenotype. The data will provide a basis for further study is necessary to uncover the mechanisms of biofilm formation in S. Typhi and discovery of novel gene functions or pathways associated with the development of the typhoid carrier state. This data may also be used to elucidate the effect of biofilm on the virulence and pathogenicity of S. Typhi in chronic carriers.
Project description:Macrophages provide a crucial environment for Salmonella enterica serovar Typhi (S. Typhi) to multiply during typhoid fever, yet our understanding of how human macrophages and S. Typhi interact remains limited. In this study, we delve into the dynamics of S. Typhi replication within human macrophages and the resulting heterogeneous transcriptomic responses of macrophages during infection. Our study reveals key factors that influence macrophage diversity, uncovering distinct immune and metabolic pathways associated with different stages of S. Typhi intracellular replication in macrophages. Of note, we found that macrophages harboring replicating S. Typhi are skewed towards an M1 pro-inflammatory state, whereas macrophages containing non-replicating S. Typhi exhibit neither a distinct M1 pro-inflammatory nor M2 anti-inflammatory state. Additionally, macrophages with replicating S. Typhi were characterized by the increased expression of genes associated with STAT3 phosphorylation and the activation of the STAT3 transcription factor. Our results shed light on transcriptomic pathways involved in the susceptibility of human macrophages to intracellular S. Typhi replication, thereby providing crucial insight into host phenotypes that restrict and support S. Typhi infection.
Project description:This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples to analyze gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection.