Project description:The purpose of this study was to characterize global gene expression in human airway epithelial cells and identify cellular pathways associated with coarse, fine and ultrafine particulate matter (PM) exposures. Ambient PM was collected in 3 different size fractions from Chapel Hill air, particles were extracted from foam or filter matrices and lyophilized. Human primary airway epithelial cells were exposed to particles at 250μg/ml or vehicle control for 6h in culture. Following exposure, RNA was isolated and hybridized to human HG U133A affymetrix chips. Keywords: particle treatment
Project description:The purpose of this study was to characterize global gene expression in human airway epithelial cells and identify cellular pathways associated with coarse, fine and ultrafine particulate matter (PM) exposures. Ambient PM was collected in 3 different size fractions from Chapel Hill air, particles were extracted from foam or filter matrices and lyophilized. Human primary airway epithelial cells were exposed to particles at 250μg/ml or vehicle control for 6h in culture. Following exposure, RNA was isolated and hybridized to human HG U133A affymetrix chips. Experiment Overall Design: Human primary epithelial cells were exposed to coarse, fine, ultrafine PM or vehicle control in culture for 6h. Three biological replicates for each treatment (coarse, fine, ultrafine, control) were conducted at (250ug/ml). 12 Affymetrix chips (HG U133A) were used.
Project description:Epidemiology studies have linked exposure to pollutant particles to increased cardiovascular mortality and morbidity, however, the mechanism remains unknown. In this study, we hypothesized that the ultrafine fraction of ambient pollutant particles would cause endothelial cells dysfunction. We profiled gene expression of human pulmonary artery endothelial cells (HPAEC) exposed to ultrafine Chapel Hill particles (UFP) (100μg/ml) or vehicle for 4h with Affymetrix HG U133 Plus 2.0 chips (N = 4 each). Using an unpaired t-test (p <0.01, 5% false discovery rate) we found 426 unique genes to be differentially expressed with 320 upregulated genes and 106 downregulated genes. Among these genes, we noted upregulation of genes related to coagulation-inflammation circuitry including tissue factor (F3), coagulation factor II receptor-like 2 (F2RL2, PAR3), interleukin (IL)-6 and IL-8. Upregulation of these genes were independently confirmed by RT-PCR and/or protein release. Genes related to the CXC chemokine family that have been implicated in the pathogenesis of vascular disease were upregulated, including MCP-1 (2.60 fold), IL-8 (2.47 fold), CXCL1 (1.41 fold), CXCL2 (1.95 fold), CXCL3 (2.28 fold) and CXCR4 (1.30 fold). In addition, genes related to clotting independent signaling of F3 were also differentially expressed, including FOS, JUN and NFKBIA. Treatment of HPAEC with UFP for 16 hours increased the release of IL6 and IL8 by 1.9-fold and 1.8-fold respectively. Pretreatment of HPAEC with a blocking antibody against F3 attenuated IL6 and IL8 release by 30% and 70% respectively. Thus using gene profiling, we uncovered that UFP may induce vascular endothelial cells to express genes related to clotting and angiogenesis. These results provide a novel hypothesis that PM may cause cardiovascular adverse health effects via induction of tissue factor in vascular endothelial cells which then triggers clotting dependent and independent downstream signaling. Experiment Overall Design: Human pulmonary artery endothelial cell cultures were treated with Chapel Hill Ultrafine particles or with vehicle control for 4h. 4 bological replicates each for treatment (100ug/ml) and control. 8 affy chips total.
Project description:Epidemiology studies have linked exposure to pollutant particles to increased cardiovascular mortality and morbidity, however, the mechanism remains unknown. In this study, we hypothesized that the ultrafine fraction of ambient pollutant particles would cause endothelial cells dysfunction. We profiled gene expression of human pulmonary artery endothelial cells (HPAEC) exposed to ultrafine Chapel Hill particles (UFP) (100μg/ml) or vehicle for 4h with Affymetrix HG U133 Plus 2.0 chips (N = 4 each). Using an unpaired t-test (p <0.01, 5% false discovery rate) we found 426 unique genes to be differentially expressed with 320 upregulated genes and 106 downregulated genes. Among these genes, we noted upregulation of genes related to coagulation-inflammation circuitry including tissue factor (F3), coagulation factor II receptor-like 2 (F2RL2, PAR3), interleukin (IL)-6 and IL-8. Upregulation of these genes were independently confirmed by RT-PCR and/or protein release. Genes related to the CXC chemokine family that have been implicated in the pathogenesis of vascular disease were upregulated, including MCP-1 (2.60 fold), IL-8 (2.47 fold), CXCL1 (1.41 fold), CXCL2 (1.95 fold), CXCL3 (2.28 fold) and CXCR4 (1.30 fold). In addition, genes related to clotting independent signaling of F3 were also differentially expressed, including FOS, JUN and NFKBIA. Treatment of HPAEC with UFP for 16 hours increased the release of IL6 and IL8 by 1.9-fold and 1.8-fold respectively. Pretreatment of HPAEC with a blocking antibody against F3 attenuated IL6 and IL8 release by 30% and 70% respectively. Thus using gene profiling, we uncovered that UFP may induce vascular endothelial cells to express genes related to clotting and angiogenesis. These results provide a novel hypothesis that PM may cause cardiovascular adverse health effects via induction of tissue factor in vascular endothelial cells which then triggers clotting dependent and independent downstream signaling. Keywords: particle treatment
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)
Project description:Peripheral blood samples were collected before (0 hour) and at 24 hours after exposure from healthy subjects who participated in previous controlled exposures to ultrafine carbon particles (UFP, 50 microg/m3) or filtered air (FA)(n = 3 each). The exposure time was 2 hours. RNA from mononuclear cell fraction (>85% lymphocytes) was extracted, amplified and hybridized to Affymetrix HU133 plus 2 microarrays. We used microarray to explore significantly altered genes after ultrafine carbon particle exposure.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:Peripheral blood samples were collected before (0 hour) and at 24 hours after exposure from healthy subjects who participated in previous controlled exposures to ultrafine carbon particles (UFP, 50 microg/m3) or filtered air (FA)(n = 3 each). The exposure time was 2 hours. RNA from mononuclear cell fraction (>85% lymphocytes) was extracted, amplified and hybridized to Affymetrix HU133 plus 2 microarrays. We used microarray to explore significantly altered genes after ultrafine carbon particle exposure. Each subject was exposed to filtered air or ultrafine carbon particles. Two peripheral blood samples (pre- and post-exposure) were taken. Mononuclear cells were isolated for gene expression analysis.