Project description:Fatty liver disease or the buildup of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant protein-protein interaction network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.
Project description:A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and reprepresents a huge public health problem owing to its propensity to progress to non-alcoholic steatohepatitis (NASH), fibrosis, and liver failure. The lipids stored in hepatic steatosis are primarily triglycerides (TGs) synthesized by two acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, with DGAT2 being linked to storage of fatty acids from de novo lipogenesis, a process that is increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and the progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here we induced NAFLD-like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte-specfici Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction of steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduced diet-induced hepatic steatosis and supports the development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.
Project description:We described a new culture system that can expand the developmental potential of pluripotent stem cells to contribute efficiently to extraembryonic lineage development. To compare the epigenetic landscape of expanded potential stem cells (EPSCs) and standard embryonic stem cells, we performed ChIP-seq study on multiple histone modifications to establish the epigenetic landscape of EPSCs.
Project description:RNA-seq analysis of livers from control mice, mice with adult onset, hepatocyte-specific GH receptor (GHR) deficiency, and GHR-deficient mice combined with IGF1 expression or expression of constitutively active ('CA') STAT5b. This dataset is part of a large study showing that adult-onset loss of hepatocyte GHR signaling increases steatosis, associated with enhanced glucokinase activity, de novo lipogenesis (DNL) and pathway selective hepatic insulin resistance.
Project description:This study tests whether hepatic steatosis, independent of inflammation, alters the hepatocyte protein secretory profile, and examines whether changes in the secretory products contribute to the development of metabolic dysfunction in other cell types. Mouse hepatocytes were isolated by flow cytometry and cultured in serum-free conditions. Conditioned media was used for LC/MS analysis to compare hepatocytes from chow fed animals to high-fat diet animals with liver steatosis.