Project description:The impact of high fat diet on secreted milk small RNA transcriptome was studied by isolating total RNA from milk fat fraction collected on lactation day 10 from control diet fed (C; n=5; 10% fat; 7% sucrose; Research Diets #D12450J, Brunswick, NJ) and high fat diet fed (HF; n=4; Research Diets #D12492, 60% of total kcal energy is fat and match 7% of total kcal is sucrose; Brunswick, NJ) mice.
Project description:The impact of high fat diet on secreted milk small RNA transcriptome was studied by isolating total RNA from milk fat fraction collected on lactation day 10 from control diet fed (C; n=5; 10% fat; 7% sucrose; Research Diets #D12450J, Brunswick, NJ) and high fat diet fed (HF; n=4; Research Diets #D12492, 60% of total kcal energy is fat and match 7% of total kcal is sucrose; Brunswick, NJ) mice.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Obesity is a global health concern affecting over 650 million adults with a major contributor being an increased consumption of a high-fat diet. Maternal obesity often results in an increased risk of offspring developing obesity. In this study, we examined the effect of diet on visceral adipose in a pre-clinical model of generational diet-induced obesity that included maternal cohorts of C57BL/6 mice fed either a control diet (10% fat) or a high-fat diet (45% fat) and the resulting female offspring fed either diet. Using bottom-up proteomics on omental adipose tissue, differential protein expression was determined with the greatest difference resulting from the generational obese cohort. Differentially expressed proteins were involved in pathways related to cancer, inflammatory disease and immune response. Taken together, the results of this study provide molecular-level insight that will enable the development of more targeted, modifiable interventions that could be implemented pre-, during and post-pregnancy.
Project description:Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time-course microarray analysis (8 time-points over 24 weeks) of high-fat diet fed mice compared to normal diet fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. When we merged core diet-induced obesity networks, Tlr2, Cd14 and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further protein-protein interaction network analysis revealed Tlr2, Cd14 and Ccnd1 were inter-related through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14 and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH. Total RNA obtained from isolated liver of C57BL/6J mice fed normal diet or high fat diet for 0, 2, 4, 6, 8, 12, 16, 20 and 24 weeks.
Project description:The objectives of this study were to understand the effect of phenolic compounds from fermented berry beverages on hyperglycemia and obesity in vivo using mice fed a high fat diet. Our hypothesis was that consumption of a fermented blueberry-blackberry beverage and its phenolic compounds would reduce the development of obesity and hyperglycemia in diet-induced obese mice. Body composition, histomorphological analysis of pancreatic islets and liver, and expression of genes involved in obesity and hyperglycemia were evaluated in order to explain the modulation of diet-induced obesity and hyperglycemia due to treatments. Total RNA was extracted from frozen pancreatic tissue of mice after 12 weeks of high-fat diet, 5 groups treated with sitagliptin, alcohol-free berry beverage (AFFB), 0.1X phenolic extract, 1X phenolic extract and 3X phenolic extract respectively, were compared to the control (water). Four replicates were included for each one of the treatments.
Project description:The effect of dietary calcium and dairy proteins on adipose tissue gene expression profile in diet induced obesity Experiment Overall Design: 9-week-old C57Bl/6J-mice were divided into two groups (n=10/group). The control diet was a standard high-fat diet (60% of energy) low in calcium (0.4%). The whey protein diet was a high-calcium (1.8%) high-fat diet with whey protein isolate. After the 21-week treatment, the adipose tissue transcript profiling (2 mice/group) was carried out using Affymetrix Mouse Genome 430 2.0 array.