Project description:BACKGROUND:The subtropical island of Taiwan is an area of high endemism and a complex topographic environment. Phylogeographic studies indicate that vicariance caused by Taiwan's mountains has subdivided many taxa into genetic phylogroups. We used mitochondrial DNA sequences and nuclear microsatellites to test whether the evolutionary history of an endemic montane bird, Steere's Liocichla (Liocichla steerii), fit the general vicariant paradigm for a montane organism. RESULTS:We found that while mountains appear to channel gene flow they are not a significant barrier for Steere's Liocichla. Recent demographic expansion was evident, and genetic diversity was relatively high across the island, suggesting expansion from multiple areas rather than a few isolated refugia. Ecological niche modeling corroborated the molecular results and suggested that populations of Steere's Liocichla are connected by climatically suitable habitat and that there was less suitable habitat during the Last Glacial Maximum. CONCLUSIONS:Genetic and ecological niche modeling data corroborate a single history--Steere's Liocichla was at lower density during the Last Glacial Maximum and has subsequently expanded in population density. We suggest that such a range-wide density expansion might be an overlooked cause for the genetic patterns of demographic expansion that are regularly reported. We find significant differences among some populations in FST indices and an admixture analysis. Though both of these results are often used to suggest conservation action, we affirm that statistically significant results are not necessarily biologically meaningful and we urge caution when interpreting highly polymorphic data such as microsatellites.
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Project description:Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).